• Title/Summary/Keyword: 적응평균필터

Search Result 131, Processing Time 0.026 seconds

Analysis of Quadratically Filtered Gradient Algorithm with Application to Channel Equalization (채널 등화기에 응용한 제2차 필터화 경사도 알고리즘의 해석)

  • 김해정;이두수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.131-142
    • /
    • 1994
  • This paper analyzes the properties of such algorithm that corresponds to the nonlinear adaptive algorithm with additional update terns, parameterized by the scalar factors ${\alpha}1,\;and\;{\alpha}2$. The analysis of concergence leads to eigenvalues of the transition matrix for the mean filter coefficient vector. Regions in which the algorithm becomes stable are demonstrated. The time constant is derived and the computational complexity of the QFG algorithm is compared with those of the conventional LMS. sign, and LFG algorithm. The properties of convergence in the mean square error is derived and the neccessary condition for the CFG algorithm to be stable is attaned. In the computer simulation a channel equalization is utilized to demonstrate the performance feature of the QFG algorithm. The QFG algorithm has the more computational complexities but the faster convergence speed than LMS and LFG algorithm. Since the QFG algorithm has smoother convergence, it may be useful in case where error bursting is a problem.

  • PDF

The Bi-directional Least Mean Square Algorithm and Its Application to Echo Cancellation (양방향 최소 평균 제곱 알고리듬과 반향 제거로의 응용)

  • Kwon, Oh-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1337-1344
    • /
    • 2014
  • The objective of an echo canceller connected to any end of a communication line such as digital subscriber line (DSL) is to compensate the outgoing transmit signal in the receiving path that the hybrid circuit leaks. The echo canceller working in a full duplex environment is an adaptive system driven by the local signal. Conventional echo canceller that implement the least mean square (LMS) algorithm provides a low computational burden but poor convergence properties. The length of the echo canceller will directly affect both the degree of performance and the convergence speed of the adaptation process. To cancel long time-varying echoes, the number of tap coefficients of a conventional echo canceller must be large, which decreases the convergence speed of the adaptive filter. This paper proposes an alternative technique for the echo cancellation in a telecommunication channel. The new technique employs the bi-directional least mean square (LMS) algorithm for adaptively computing the optimal set of the coefficients of the echo canceller, which is composed of weighted combination of both feedforward and feedback algorithms. Finally, Simulation results as well as mathematical analysis demonstrates that the proposed echo canceller has faster convergence speed than the conventional LMS echo canceller with nearly equivalent complexity of computation.

Estimation of Medical Ultrasound Attenuation using Adaptive Bandpass Filters (적응 대역필터를 이용한 의료 초음파 감쇠 예측)

  • Heo, Seo-Weon;Yi, Joon-Hwan;Kim, Hyung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.43-51
    • /
    • 2010
  • Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.

The Improvement of Convergence Characteristic using the New RLS Algorithm in Recycling Buffer Structures

  • Kim, Gwang-Jun;Kim, Chun-Suck
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2003
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-l, we may compute the updated estimate of this vector at iteration n upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RLS algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the B times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

Edge Enhancement of Halftone Image using Adaptive Error Diffusion Method (적응적 오차 확산법을 이용한 하프톤 영상의 경계선 개선)

  • Kim, Sang-Chul;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.96-104
    • /
    • 2011
  • A halftoning method is used to obtain a binary image visually similar to a continuous gray-level image through the image output devices employing the limited number of gray-levels. As a halftoning method, the error diffusion method is widely used in various applications because of its low computational complexity and good image quality. However, this method weakens the edge in the process of error diffusion to the neighboring pixels. In this case, degradation of the edge quality and damage of the vivid image is expected. To solve these problems, the proposed method determines the adaptive error filter considering the error information of the present pixel and edge distribution of the neighbor pixels. Compared with the conventional methods for enhancing edges, the proposed method involves relatively a few process resources because of its simple procedure, still considerably improving the edges in the halftone image. To evaluate the objective image quality, the performance of the proposed method is compared with that of the conventional method in terms of the edge correlation and the local average accordance.

ANN-based Adaptive Distance Measurement Using Beacon (비콘을 사용한 ANN기반 적응형 거리 측정)

  • Noh, Jiwoo;Kim, Taeyeong;Kim, Suntae;Lee, Jeong-Hyu;Yoo, Hee-Kyung;Kang, Yungu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.147-153
    • /
    • 2018
  • Beacon enables one to measure distance indoors based on low-power Bluetooth low energy (BLE) technology, while GPS (Global Positioning System) only can be used outdoors. In measuring indoor distance using Beacon, RSSI (Received Signal Strength Indication) is considered as the one of the key factors, however, it is influenced by various environmental factors so that it causes the huge gap between the estimated distance and the real. In order to handle this issue, we propose the adaptive ANN (Artificial Neural Network) based approach to measuring the exact distance using Beacon. First, we has carried out the preprocessing of the RSSI signals by applying the extended Kalman filter and the signal stabilization filter into decreasing the noise. Then, we suggest the multi-layered ANNs, each of which layer is learned by specific training data sets. The results showed an average error of 0.67m, a precision of 0.78.

An Adaptive Filtering Method for Enhancement of Inter-color Plane Estimation in HEVC RExt RGB Images (HEVC RExt RGB 영상의 색평면 간 예측 향상을 위한 적응적 필터링 기법)

  • Choi, Jangwon;Choe, Yoonsik
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.647-650
    • /
    • 2013
  • HEVC RExt(High Efficiency Video Coding Range Extension) set a goal to support RGB/YUV 4:2:2 4:4:4 color sampling and over 10 bit-depth images. Unlike the previous 4:2:0 color sampling images, RGB images have the high correlation in inter-color planes. Using this characteristic, some methods which are contributed in JCT-VC standardization meetings estimate the pixel values of inter-color plane. But when we use the estimation of inter-color plane in RGB images, high frequency components of RGB images are caused to reduce the coding efficiency because they usually have the low inter-color plane correlation. Therefore, in this paper, we propose an adaptive low pass filtering method in the inter-color plane estimation. Using this method, we can improve the estimation efficiency of inter-color plane in RGB images. The experimental results with HEVC RExt RGB test sequences show that the proposed method has 0.6% BD(Bjontegaard Distortion)-rate gain and some increased complexity compared to the previous inter-color plane estimation method.

Spatially Adaptive Color Demosaicing of Noisy Bayer Data (잡음을 고려한 공간적응적 색상 보간)

  • Kim, Chang-Won;Yoo, Du-Sic;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • In this paper, we propose spatially adaptive color demosaicing of noisy Bayer data. When sensor noises are not considered in demosaicing, they may degrade result image. In order to obtain high resolution image, sensor noises are considered in the color demosaicing step. We identify flat, edge and pattern regions at each pixel location to improve the performance of the algorithm and to reduce complexity. Based on the pre-classified regions, the demosaicing of the G channel is performed using the local statistics to reduce the interpolation error. The sensor noise is simultaneously removed by a modified version of non-local mean filter in the green and in the color difference domain. The R and B channels are interpolated easily using fully interpolated and denoised G and color difference values. Experimental results show that the proposed method achieves a significant improvement in terms of visual and numerical criteria, when compared to conventional methods.

Object Tracking Using Adaptive Scale Factor Neural Network (적응형 스케일조절 신경망을 이용한 객체 위치 추적)

  • Sun-Bae Park;Do-Sik Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.522-527
    • /
    • 2022
  • Object tracking is a field of signal processing that sequentially tracks the location of an object based on the previous-time location estimations and the present-time observation data. In this paper, we propose an adaptive scaling neural network that can track and adjust the scale of the input data with three recursive neural network (RNN) submodules. To evaluate object tracking performance, we compare the proposed system with the Kalman filter and the maximum likelihood object tracking scheme under an one-dimensional object movement model in which the object moves with piecewise constant acceleration. We show that the proposed scheme is generally better, in terms of root mean square error (RMSE) performance, than maximum likelihood scheme and Kalman filter and that the performance gaps grow with increased observation noise.

Noise Canceler Based on Deep Learning Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1103-1108
    • /
    • 2023
  • In this paper, we propose a new algorithm for attenuating the background noises in acoustic signal. This algorithm improves the noise attenuation performance by using the FNN(: Full-connected Neural Network) deep learning algorithm instead of the existing adaptive filter after wavelet transform. After wavelet transforming the input signal for each short-time period, noise is removed from a single input audio signal containing noise by using a 1024-1024-512-neuron FNN deep learning model. This transforms the time-domain voice signal into the time-frequency domain so that the noise characteristics are well expressed, and effectively predicts voice in a noisy environment through supervised learning using the conversion parameter of the pure voice signal for the conversion parameter. In order to verify the performance of the noise reduction system proposed in this study, a simulation program using Tensorflow and Keras libraries was written and a simulation was performed. As a result of the experiment, the proposed deep learning algorithm improved Mean Square Error (MSE) by 30% compared to the case of using the existing adaptive filter and by 20% compared to the case of using the STFT(: Short-Time Fourier Transform) transform effect was obtained.