• Title/Summary/Keyword: 적응적 모델

Search Result 1,210, Processing Time 0.034 seconds

Adaptive Broadcasting Strategy for Quasi Cache (준(準)캐시를 위한 적응적 방송 기법)

  • 오창민;송병호;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.142-144
    • /
    • 2001
  • 준 캐시(quasi cache)는 데이타 캐시 방법의 일종으로 엄격한 일관성이 아닌 약한 형태의 일관성을 적용함으로써 캐시 일관성 유지 비용을 줄이는 방법이다. 그러나 준 캐시 또한 갱신이 빈번한 환경에서는 기존 캐시와 같이 일관성 유지를 위한 통신 비용이 커질 수 있다. 이 논문에서는 준 캐시의 기본 모델을 살펴보고, 기본 모델에 적응적인 기법을 적용한 모델을 제시한다. 또한 실험을 통해 갱신이 빈번한 환경에서는 적응적 모델이 기본 모델보다 더 작은 통신 비용으로 캐시 일관성을 유지할 수 있음을 보인다.

  • PDF

Generalized Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequences (동영상에서 일반화된 시공간 적응적 Auto-Regressive 모델의 연구)

  • 두석주;강문기
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.131-134
    • /
    • 1998
  • 본 논문에서는 시공간 적응적 기반영역 (Adaptive Spatio-Temporal Support Region : ASTSR)을 바탕으로 하는 일반화된 Auto-Regressive(AT)모델을 제안한다. 시공간 적응적 기반 영역은 영상 내 경계선의 특성과 동영상에서의 시간적 불연속 (temporal discontinuity) 개념을 이용하여 구성되어질 수 있다. 설정된 시공간 적응적 기반영역은 기존의 AR 모델에 적용되어지는 직사각형 형태의 기반영역에 비하여 보다 정상상태(stationarity)의 특성을 가지며 이로 인해 더 정확한 모델 파라미터들을 추출해 낼 수 있을 뿐 아니라 데이터의 처리량에서도 큰 이득을 얻을 수 있다. 제안된 방법은 손상된 동영상 데이터를 복원(motion picture restoration)하는 측면에 응용되어 실험되어졌으며 기존의 모델과 비교하여 우수한 성능을 보여주었다.

  • PDF

Online Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution (화자공간모델 진화에 근거한 연속밀도 은닉 마코프모델의 온라인 적응)

  • Kim Dong Kook;Kim Young Joon;Kim Hyun Woo;Kim Nam Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.69-72
    • /
    • 2002
  • 본 논문에서 화자공간모델 evolution에 기반한 continuous density hidden Markov model (CDHMM)의 online 적응에 대한 새로운 기법을 제안한다. 학습화자의 a priori knowledge을 나타내는 화자공간모델은 factor analysis (FA) 또는 probabilistic principal component analysis (PPCA)와 같은 은닉변수모델(latent variable model)에 의해 효과적으로 나타내어진다. 은닉 변수모델은 화자공간모델뿐아니라 CDHMM 파라메터의 ajoint prior분포를 표시함으로, maximum a posteriori(MAP)적응기법에 직접 적용되어진다. 화자공간모델의 hyperparameters와 CDHMM파라메터를 동시에 순차적으로 적응하기 위해 quasi-Bayes (QB)추정 기술에 기반한 online 적응기법을 제안한다. 연속숫자음 인식과 관련된 화자적응 실험을 통해 제안된 기법은 적은 적응데이터에서 좋은 성능을 나타내며, 데이터가 증가함에 따라 성능이 지속적으로 증가함을 보여준다.

  • PDF

Adaptive Learning System using Real-time Learner Profiling (실시간 학습자 프로파일링을 이용한 적응적 학습 시스템)

  • Yang, Yeong-Wook;Yu, Won-Hee;Lim, Heui-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.467-473
    • /
    • 2014
  • Adaptive learning system means a system that provides adaptively learning materials according to the learning needs of learners. It consists of expert model, instructional model and student model. Expert model is that stores information which is to be taught. Student model stores the data of learning history and learning information of students. Instructional model provides necessary learning materials for actual leaners. This paper has constructed student model through learner's profile information and instructional model through dynamic scenario construction. After that, We have developed adaptively to provide learning to learners by constructing suitable dynamic scenario based on learners profile information. In the end, satisfaction result about this system showed a high degree of satisfaction and 88%.

Performance Enhancement for Speaker Verification Using Incremental Robust Adaptation in GMM (가무시안 혼합모델에서 점진적 강인적응을 통한 화자확인 성능개선)

  • Kim, Eun-Young;Seo, Chang-Woo;Lim, Yong-Hwan;Jeon, Seong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.268-272
    • /
    • 2009
  • In this paper, we propose a Gaussian Mixture Model (GMM) based incremental robust adaptation with a forgetting factor for the speaker verification. Speaker recognition system uses a speaker model adaptation method with small amounts of data in order to obtain a good performance. However, a conventional adaptation method has vulnerable to the outlier from the irregular utterance variations and the presence noise, which results in inaccurate speaker model. As time goes by, a rate in which new data are adapted to a model is reduced. The proposed algorithm uses an incremental robust adaptation in order to reduce effect of outlier and use forgetting factor in order to maintain adaptive rate of new data on GMM based speaker model. The incremental robust adaptation uses a method which registers small amount of data in a speaker recognition model and adapts a model to new data to be tested. Experimental results from the data set gathered over seven months show that the proposed algorithm is robust against outliers and maintains adaptive rate of new data.

Face Detection through Implementation of adaptive Saliency map (적응적인 Saliency map 모델 구현을 통한 얼굴 검출)

  • Kim, Gi-Jung;Han, Yeong-Jun;Han, Hyeon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.153-156
    • /
    • 2007
  • 인간의 시각 시스템은 선택적 주의 집중에 의해 시각 수용체로 도달되는 많은 물체들 중에서 필요한 정보만을 추출하여 원하는 작업을 수행한다. Itti와 Koch는 시각적 주의를 제어할 수 있는, 신경계를 모방한 계산적 모델을 제안하였으나 조명환경에 고정적인 saliency map을 구성하였다. 따라서, 본 논문에서는 영상에서 ROI(region of interest)을 탐지하기 위한 조명환경에 적응적인 saliency map 모델을 구성하는 기법을 제시한다. 변화하는 환경에서 원하는 특징을 부각시키기 위하여 상황에 적응적인 동적 가중치를 부여한다. 동적 가중치는 conspicuity map에 S.K. Chang이 제안한 PIM(Picture Information Measure)을 적용시켜 정보량을 측정한 후, 이에 따라 정규화된 값을 부여함으로써 구현한다. 제안하는 조명환경에 강인한 적응적인 saliency map 모델 구현의 성능을 얼굴검출 실험을 통하여 검증하였다.

  • PDF

Perceptual Data Hiding Model with Adaptive Watermark Strength (적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델)

  • 조영웅;장봉주;김응수;문광석;권기룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.287-290
    • /
    • 2002
  • 본 논문에서는 디지털 컨텐츠 저작권 보호를 위해 강인성과 비가시성의 유지를 위한 보다 효과적인 방법으로 웨이브릿 변환에서 적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델을 제안한다. 먼저 영상을 9/7 쌍직교 웨이브릿 필터를 사용해 4레벨로 다해상도 분해한다. 다음으로 연속부대역 양자화(successive subband quantization)를 통한 시각적 중요계수(perceptually significant coefficient: PSC)들을 선정하여 선택된 계수들에 대해서만 워터마크 정보를 삽입한다. 지각 모델은 정상상태의 일반화 가우시안 모델(generalized gaussian model)로 추정된 NVF(noise visibility function)로 에지와 텍스쳐영역 그리고 평탄영역에 따라 각각 적응적으로 삽입되게 한다. 이는 각 서브밴드 내의 분산과 형상계수(shape parameter)에 의해 결정된다. 적응적 워터마크의 삽입강도를 갖기 위해 에지와 텍스쳐영역의 삽입강도는 각 서브밴드의 주파수 감도(frequency sensitivity)로 결정되고, 평탄영역의 삽입강도는 영상의 국부적 특성에 근거한 통계적 가중치를 사용한다. 삽입되는 워터마크는 랜덤시퀀스로 N(0,1)이다. 여러 가지 공격에 대한 실험으로 제안한 방법의 비가시성과 강인성을 확인한다.

  • PDF

A Study on Speaker Adaptation of HMM in a Continous Speech Recognition System (HMM을 이용한 연속음성인식 시스템의 화자적응화에 관한 연구)

  • 김상범
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.100-104
    • /
    • 1995
  • 일반적으로 화자적응화는 이미 학습되어 있는 불특정 화자 모델을 표준모델로 하고 소량의 적응화용 발화로 추가적인 학습을 실시하여 특정화자 모델의 성능에 가깝게 하는 기술로서 연속음성 인식에 있어서 매우 중요하다. ML 추정법을 이용한 화자적응화는 카테고리마다 모델의 학습패턴들을 다수개 준비한 후 학습시에 일괄적으로 적용시켜 모델 파라메터를 추정 갱신하므로 추가되는 화자데이터에 대해 데이터를 모두 공급하여야 한다. 본 연구에서는 문발화 데이터의 음절단위를 자동추출한 후 추가되는 화자데이터가 주어질 때 마다 적응화할 수 있는 화자적응화 방법을 검토하였다. 이 방법은 문발화 데이터를 잘라내지 않고 음절 단위를 자동추출시켜 추가 데이터마다 최대 사후확률 추정법을 이용하여 적응화 시키는 것으로 수소의 데이터로서도 적응화를 가능하게 하는 것이다. 본 연구에서 사용되는 음성데이터는 신문사설에서 발췌한 연속음성 10문장을 사용하고, 이 음성 데이터중 6명분은 HMM 학습용으로 하고 나머지 3명분은 적응화용 및 평가용 데이터로 사용하였다. 6명의 화자를 DDCHMM으로 학습하고 나머지 3명분을 MAP법으로 적응화시켰다. 그 결과 적응전과 비교해 볼 때 약 32%의 인식율 향상을 얻을 수 있었다.

  • PDF

Digital Image Watermarking Using Perceptually Tuned Characteristic and Stochastic Model Based on Multiwavelet Transform (멀티웨이브릿변환 영역에서 지각적 동조 특성과 통계적 모델을 이용한 디지털 영상 워터마킹)

  • 황의창;윤재식;유상욱;문광석;박남천;권기룡
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.54-57
    • /
    • 2003
  • 본 논문에서는 멀티웨이브릿 변환영역에서 통계적 모델과 지각적 동조특성을 이용한 적응적 디지털 워터마킹 기법을 제안한다. 워터마크는 4레벨로 분해된 멀티웨이브릿 변환영역에서 최저주파 영역과 최고주파 대역들을 제외한 중간 및 고주파 영역에, 인간 시각 시스템(human visual model BWS)을 이용한 JND(just noticeable difference) 특성과 NVF(noise visibility function)를 이용한 통계적 특성을 기반으로 정상상태 가우시안 모델과 비정상상태 가우시안 모델에 따라 지각적 동조 특성을 이용하여 적응적으로 삽입된다. 실험 결과 제안한 방법에서 에지나 텍스쳐 영역에 더 강하게 삽입할 수 있었고, 평탄영역에서 보다 적응적으로 은닉할 수 있었으며 정상상태 가우시안 모델에서 지각적 동조특성을 이용한 방법이 더 우수한 비가시성과 강인성을 확인하였다.

  • PDF

Projection-based Mesh Generation for 3D Panoramic Virtual Environment Creation (3D 파노라믹 가상 환경 생성을 위한 투영기반 메쉬 모델 생성 기법)

  • Lee, Won-Woo;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.493-498
    • /
    • 2006
  • 본 논문에서는 3D 파노라믹 가상 환경 생성을 위한 투영기반 메쉬 모델 생성 기법을 제안한다. 제안된 메쉬 모델 생성 기법은 멀티뷰 카메라를 이용해 다수의 시점에서 얻은 실내 환경의 3D 데이터로부터 메쉬 모델을 생성한다. 먼저 미리 보정된 카메라 파라미터를 이용해 입력된 임의의 3D점 데이터를 여러 개의 하위 점군으로 분할한다. 적응적 샘플링을 통해 각 하위 점군으로부터 중복되는 점 데이터를 없애고 새로운 점군을 생성한다. 각각의 하위 점군을 Delaunay삼각화 방법을 통해 메쉬 모델링하고, 인접한 하위 점군의 메쉬들을 통합하여 하나의 메쉬 모델을 생성한다. 제안된 메쉬 모델링 방법은 점군의 분할을 통해 각 부분의 메쉬 모델을 독립적으로 생성하므로 실내 환경과 같은 넓은 영역의 모델링에 알맞다. 또한, 적응적 샘플링을 통해 3D 데이터가 갖는 깊이 정보의 특징을 보존하면서 메쉬 데이터의 크기를 줄인다. 생성된 가상 환경 모델은 가상/증강현실 응용 어플리케이션 등에 적용이 가능하다.

  • PDF