• Title/Summary/Keyword: 적응적 균열진전

Search Result 4, Processing Time 0.02 seconds

Adaptive Crack Propagation Analysis with the Element-free Galerkin Method (Element-free Galerkin 방법을 이용한 적응적 균열진전해석)

  • 최창근;이계희;정흥진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.485-500
    • /
    • 2000
  • In this paper the adaptive crack propagation analysis based on the estimated local and global error in the element-free Galerkin (EFG) method is presented. It is possible to keep consistency and accuracy of analysis in each propagation step by adaptive analysis. The adaptivity analysis in crack propagation is achieved by adding and removing the node along the background integration cell that are refined or recovered as estimated error. These errors are obtained by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the convergence behavior is investigated lot several examples. The results of these examples show the efficiency of proposed scheme in crack propagation analysis.

  • PDF

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

Adaptive Crack Propagation Analysis with the Element-free Galerkin Method (Element-free Galerkin 방법을 이용한 적응적 균열진전해석)

  • 최창근;이계희;정흥진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.84-91
    • /
    • 2001
  • In this study, the adaptive analysis procedure of crack propagation based on the element-free Galerkin(EFG) method is presented. The adaptivity analysis in quasi-static crack propagation is achieved by adding and/or removing the node along the background integration cell that are refined or recovered according to the estimated error. These errors are obtained basically by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples. The results of these examples show the efficiency and accuracy of proposed scheme in crack propagation analysis.

  • PDF

Fracture Mechanics Analysis of Multi-Phase Material by Finite Eelement Method (유한요소법에 의한 다상재료의 파괴역학적 해석)

  • 표창률;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.221-228
    • /
    • 1989
  • The objective of this paper is to develop a numerical technique for analyzing crack driving forces in multi-phase materials. The analysis was based on finite element method coupled with a virtual crack extension technique which is known as the most efficient tool in computational fracture mechanics analysis. The modified J-integral method, proposed by Miyamoto and Kikuchi for the analysis of dual-phase material was carried out by subtracting the J-values for contours surrounding each phase boundary from the J-values for overall contour. It was shown that the proposed numerical procedure, based on the modified J-integral coupled with a virtual crack extension technique, can be used as an effective numerical tool for determining crack driving forces in multi-phase materials.