• Title/Summary/Keyword: 적응뉴로퍼지추론시스템

Search Result 25, Processing Time 0.049 seconds

Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making (퍼지의사결정을 이용한 교량 구조물의 건전성평가 모델)

  • 안영기;김성칠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1022-1031
    • /
    • 2002
  • This paper presents efficient models for bridge structures using CART-ANFIS (classification and regression tree-adaptive neuro fuzzy inference system). A fuzzy decision tree partitions the input space of a data set into mutually exclusive regions, each region is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it continuous and smooth everywhere. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

The Design Methodology of An Efficinet Neuro-Fuzzy Stysem (효율적인 뉴로-퍼지 시스템의 설계 방법론)

  • 조영임;황종선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.3
    • /
    • pp.38-54
    • /
    • 1993
  • 퍼지 제어기(FLC)는 Max-Min CRI 방법을 이용하여 추론하는 시스템이다. 그러나 이 방법은 주관적인 멤버쉽 함수의 결정, 오류 발생 가중치 전략, 비합리적인 추론 규칙들의 조합이라는 세가지 문제점 때문에 원하는 추론 결과와 실제 추론 결과 사이에 상당한 오류 영역을 발생시킨다. 본 논문에서는 이를 해결하기 위해 퍼지 이론에 신경 회로망의 학습 기능이 융합되어 지능적으로 작동하는 뉴로-퍼지 시스템(INFS)을 제안한다. INFS는 이상의 문제 해결 방안이 지식 획득 단계, 적응 조절단계를 통해 작동함으로써 임의의 입력에 대해서도 추론이 가능한 시스템이다. 제안된 INFS를직류 계열 모니터에 적용한 결과 신경 회로망을 사용하지 않았을때 보다 오류 영역을 상당히 줄여주었다. 또한 학습 시간을 고려해 볼 때, INFS에서 사용하는 추론 방법(NCRI 방법)이 지금까지 다른 방법에 비해 휠씬 효율적이었다.

  • PDF

Design of Adaptive Neuro-Fuzzy Inference System Based Automatic Control System for Integrated Environment Management of Ubiquitous Plant Factory (유비쿼터스 식물공장의 통합환경관리를 위한 적응형 뉴로-퍼지 추론시 스템 기반의 자동제어시스템 설계)

  • Seo, Kwang-Kyu;Kim, Young-Shik;Park, Jong-Sup
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • The adaptive neuro-fuzzy inference system (ANFIS) based automatic control system framework was proposed for integrated environment management of ubiquitous plant factory which can collect information of crop cultivation environment and monitor it in real-time by using various environment sensors. Installed wireless sensor nodes, based on the sensor network, collect the growing condition's information such as temperature, humidity, $CO_2$, and the control system is to monitor the control devices by using ANFIS. The proposed automatic control system provides that users can control all equipments installed on the plant factory directly or remotely and the equipments can be controlled automatically when the measured values such as temperature, humidity, $CO_2$, and illuminance deviated from the decent criteria. In addition, the better quality of the agricultural products can be gained through the proposed automatic control system for plant factory.

Chronic Stress Evaluation using Neuro-Fuzzy (뉴로-퍼지를 이용한 만성적인 스트레스 평가)

  • ;;;;;;;Hiroko Takeuchi;Haruyuki Minamitani
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.465-471
    • /
    • 2003
  • The purpose of this research was to evaluate chronic stress using physiological parameters. Wistar rats were exposed to the sound stress for 14 days. Biosignals were acquired hourly. To develop a fuzzy inference system which can integrate physiological parameters. the parameters of the system were adjusted by the adaptive neuro-fuzzy inference system. Of the training dataset, input dataset was the physiological parameters from the biosignals and output dataset was the target values from the cortisol production. Physiological parameters were integrated using the fuzzy inference system. then 24-hour results were analyzed by the Cosinor method. Chronic stress was evaluated from the degree of circadian rhythm disturbance. Suppose that the degree of stress for initial rest period is 1. Then. the degree of stress after 14-day sound stress increased to 1.37, and increased to 1.47 after the 7-day recovery period. That is, the rat was exposed to 37%-increased amount of stress by the 14-day sound and did not recover after the 7-day recovery period.

Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller (적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.730-737
    • /
    • 2001
  • In this paper, an stabilization control method using adaptive neuro-fuzzy controller(ANFC) is proposed for modeling of nonlinear complex systems. The proposed adaptive neuro-fuzzy controller implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks from input and output data of processes. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Structure Identification of Nonlinear System Using Adaptive Neuro-Fuzzy Inference Technique (적응 뉴로 퍼지추론 기법에 의한 비선형 시스템의 구조 동정에 관한 연구)

  • 이준탁;정형환;심영진;김형배;박영식
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.298-301
    • /
    • 1996
  • This paper describes the structure Identification of nonlinear function using Adaptive Neuro-Fuzzy Inference Technique(ANFIS). Nonlinear mapping relationship between inputs and outputs were modeled by Sugeno-Takaki's Fuzzy Inference Method. Specially, the consequent parts were identified using a series of 1st order equations and the antecedent parts using triangular type membership function or bell type ones. According to learning Rules of ANFIS, adjustable parameters were converged rapidly and accurately.

  • PDF

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Diagnosis of Deterioration Grades for Overhead Transmission Lines using Adaptive Neuro-Fuzzy Inference System (적응 뉴로퍼지 추론시스템을 이용한 가공 송전선의 열화등급 진단)

  • 김성덕;이상래
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Aluminum Stranded Conductors Steel Reinforced (ACSR) in overhead transmission lines have slowly degraded due to pollutants in the air for a long period of time, so in the 2000, a number of them has been exceeded over their forecasted useful life. Since most of them are faced with assessment their present conditions in regard to economical maintenance, in this paper, we have suggested a method in order to evaluate the current condition of aged conductors by using dominant parameters such as elapsed years, environment index, and conductor configuration. A diagnostic system for predicting the deterioration grades corresponding to the lifetime of aged conductors is described, which is designed as an Adaptive Neuro-fuzzy Inference System (ANFIS) based on knowledge and experiences of experts. Applying this diagnostic system to practical transmission lines in domestic, it is shown that the system can be effectively used as a guide to perform nondestructive diagnosis and economical operation for old ACSR conductors.