Microwave 무선 링크에서 거리에 따라 고 품질의 무선 링크를 지속적으로 보장하기 위해서는 무선 페이딩에 대한 고려가 필요하다. 링크 거리에 따라 동일한 고정 변조 방식을 적용할 경우 거리에 따른 페이딩 발생 확률의 증가로 장거리의 경우 요구 가용도를 지속적으로 보장하기 어렵다. 이를 위해 AM(Adaptive Modulation)이 유용하지만 AM만으로는 가변되는 전송량으로 인해 가용도 보장에 제한사항이 있다. 이전 연구에서 링크 거리를 고려한 전송 성능 향상 기법을 제안 했었다. 그러나, 이전 방법은 변수를 고려한 수식을 제시하지 않아 공통 적용을 위해서는 보완이 필요하였다. 본 논문에서는 장거리 무선 링크에서 가용도 보장을 위한 페이드 마진을 고려한 AM에 기반한 우선순위 트래픽 전송량 산출식을 제시하고 채널 대역폭 비교를 통한 최적화된 적응 전송 기법을 제안한다.
본 논문에서는 환경변화에 대해 강인하게 동작하는 음성인식 시스템을 위해 잡음적응 훈련과 변별학습 방식을 결합한 형태의 환경적응 방식을 제안한다. 다중환경 훈련과 잡음제거방식을 결합한 형태인 잡음적응 훈련 방식은 음성인식을 위한 MCE (Minimum Classification Error)의 목적과는 거리가 있고, 음성인식 시스템이 사용되는 모든 환경을 반영하는 것은 현실적으로 어렵다는 점에서 한계가 있다. 이에 잡음적응 훈련방식으로 훈련된 기본 음향모델을 목적환경에서 수집한 소량의 데이터를 이용한 변별학습을 통해 환경적응 모델로 변환함으로써 이러한 단점을 보완할 수 있는 잡음 적응 변별학습을 이용한 훈련방식을 제안한다.
본 논문에서는 잡음 환경에서 음성 인식 시스템의 성능을 개선할 수 있는 잡음제거 방식과 거리 측정 방법을 연구하고 백색 및 유색 잡음 환경에서 거리 측정 방법에 따른 음성 인식 시스템의 성능을 평가하였다. 잡음 제거 방법으로는 음성 인식 시스템의 전처리 과정으로서 사용될 수 있는 스펙트럼 차감법, 자기 상관 차감법, 적응 잡음 제거, 적응 빔 형성기가 있으며 거리 측정 방법으로는 Log Likelihood Ration($d_{LLR}$), 켑스트럼에 의한 거리 측정 ($d_{CEP}$), 가중 켑스트럼 거리 측정 ($d_{WCEP}$), 스펙트럼 기울기에 의한 거리 측정 ($d_{RPS}$), 켑스트럼 투영 거리 측정방법 ($d_{CP},\;d_{BCP},\;d_{WCP},\;d_{BWCP}$)들이 있다. 백색 및 자동차 잡음 환경에서의 화자 종속 단독음 인식 실험 결과, 켑스트럼 계수의 높은 차수에 큰 가중을 두는 거리 측정 방법인 $d_{RPS},\;d_{WCEP}$가 잡음에 강한 특성을 나타내었으며, 잡음이 존재할 때는 pre-emphasis를 하지 않은 경우가 높은 인식율을 얻을 수 있었다.
본 논문에서는 부화소 단위의 적응적인 선형 보간법을 제안한다. 보통의 선형 보간법에 화소 마다 매개변수가 도입되고 이 매개 변수를 최적으로 구하기 위해서 저역 필터와 MMSE (minimum mean square error) 방법을 이용한 일반적인 보간 구조를 제안한다. 또한 제안된 일반적인 적응 선형 보간 구조에서 복잡도를 최소화한 방법을 유도하여 간단한 닫힌 형태의 식으로 제시한다. 기존 방법인 보통의 선형 보간법, 3차 컨볼루션 보간법에 비교하여 주관적으로나 객관적으로 제안된 방법의 우수함을 실험 결과로 알 수 있을 뿐만 아니라 왜곡 거리 선형 보간법(warped distance linear interpolation), 이동 선형 보간법(shifted linear interpolation) 등의 최근 기술과 비교하여도 우수함을 실험결과는 보여준다.
본 논문에서는 스테레오 비전에서 시차를 이용하여 근거리뿐만 아니라 원거리의 장애 물체에 대해서도 신뢰성 있는 거리를 추정하기 위한 알고리즘을 제안한다. 시차를 이용한 거리 측정에서 양자화 오차는 원거리에서의 거리 정확도를 떨어뜨리게 되므로, 이를 최소화하기 위해 부화소 보간법(sub-pixel interpolation)을 이용하여 시차 정확도를 향상시키고 거리 정확도 및 경로 추적의 최적화를 위해서 향상된 적응형 퍼지 칼만 필터(EAFSTKF : Enhanced Adaptive Fuzzy Strong Tracking Kalman Filter)를 사용한다. 제안한 방법은 차량과 같이 다양한 동적인 움직임에 의한 비선형성에 대하여 기존 칼만 필터에서 발생되는 발산 문제(divergence problem)를 해결할 수 있고, 거리의 정확도 및 신뢰도도 높일 수 있다. 몬테카를로(Monte Carlo) 방법을 이용한 모의실험 결과 제안한 방법은 기존 방법들과 거리 오차율(RMSER : Root Mean Square Error Rate)을 비교하였을 때, strong tracking Kalman filter(STKF)에 비하여 성능이 약 13.5%정도 향상되었음을 보여준다.
최근 스마트 폰 카메라가 발달함에 따라, 전문적인 촬영장비 없이 일반 스마트 폰 카메라만으로 피부 상태를 추정할 수 있을 정도의 고해상도 영상 획득이 가능해졌다. 스마트 폰을 활용한 영상 촬영은 일정한 거리에서 이루어지기가 힘들기 때문에 촬영거리에 적응적인 피부 특성 측정 방법이 필수적이다. 본 논문에서는, 여러 피부 특성 중 거리에 따라 크기가 변하는 모공검출에 집중하였다. 실험을 통해 촬영 거리와 피부 특성 검출에 적절한 마스크 크기 사이의 관계를 모델링했고, 모공크기 보상기법을 설계하였다. 서로 다른 거리에서 촬영한 영상에서 실험한 결과, 기준 거리에서의 결과와 유사한 모공 검출 결과를 얻을 수 있음을 확인하였다.
칼라 정보를 이용하여 영상을 정합하기 위해서는 적은 수의 칼라 집합으로 영상을 표현하는 영상 양자화 과정이 필요하다. 적응적 양자화를 사용하는 경우에는 균일 양자화에 비해 높은 정합 성능을 기대할 수 있지만 상이한 칼라 집합의 생성으로 인해 영상 정합 과정이 힘들게 된다. 이에 본 논문에서는 상이한 칼라 집합을 갖는 영상을 정합할 수 있는 기초적인 연구를 수행하였다. 영상 정합을 위해 우선 STR(sort-tile-recursive) 방법[1]을 응용하여 질의 영상의 각 칼라에 대한 유사 칼라를 DB 영상으로부터 빠르게 선정할 수 있는 방법을 개발하였다. 질의 칼라와 유사 칼라간의 유사도를 정의하고 이를 기반으로 영상간의 유사도를 계산함으로써 영상 정합에 이용할 수 있도록 하였다. 칼라간의 유사도는 칼라 차이가 고려되어 정의되는데 칼라 차이는 칼라 공간에서의 칼라 거리로 계산된다. 칼라 거리를 계산하기 위해 유클리디언 거리를 이용할 경우 많은 계산량이 요구되므로 기존의 시티블록 거리나 체스보드 거리에 비해 유클리디언 거리를 좀더 유사하게 근사화하면서 빠른 계산이 가능한 거리 계산 방법을 개발하였다.
본 논문은 예측하지 못한 외부 환경 요소 변화로 인해 저하되는 비행 성능을 $L_1$ 적응 제어 기법으로 보상하는 궤적 추종 기법을 제안하였다. 제안된 궤적 추종 기법은 상대 거리를 이용하여 속도 명령을 생성하는 유도 법칙과 속도 명령을 추종하는 적응 제어 루프로 구성되어 있다. 경로 추종 성능을 향상시키기 위하여, 유도 법칙에서 생성한 속도 명령이 적응 제어기의 기준 입력이 되도록 설계하였다. 유도 법칙에서는 목표 궤적과 상대 거리와 그 변화량에 따른 가속도 명령이 생성되며, 이를 적분하여 속도 명령을 생성한다. $L_1$ 적응 제어 루프는 불확실성이 존재하는 환경에서 정밀한 경로 추종 성능을 보장한다. 제안된 경로 추종 시스템은 쿼드로터 항공기를 사용하여 수직 이착륙 및 이동 표적 추종과 같은 비행 실험으로 검증하였다.
본 논문은 스테레오 비젼 시스템을 이용하여 이동 객체를 추출하고 그 객체까지의 거리를 측정하는 방법을 제안하였다. 이동 객체에 대한 이동 성분은 화소 단위의 정합을 통하여 추출하였으며, 적응형 임계값은 영상의 밝기 변화를 제거하는데 효과적으로 대처할 수 있었다. 이동 객체까지의 거리는 평행식 카메라를 적용한 스테레오 비전 시스템을 사용하여 측정하였다. 실험 결과 이동 객체에 대한 거리측정 오차가 평균 1%로 나타남으로써 제안한 알고리즘을 이용한 이동 객체의 거리측정 가능성을 제시하였다.
최근 IT 기술이 융합된 지능형 자동차 기술에 대한 관심이 높아짐에 따라 이에 대한 연구가 활발히 진행되고 있다. 차선 검출은 지능형 자동차의 주요 과제인 첨단 안전자동차 기술의 핵심적인 부분으로 국내외에서 다양한 방법들에 대한 연구가 진행되었다. 차량의 안전을 향상시키기 위해서는 충분한 제동거리 확보가 가능한 거리까지 정확하고 빠른 차선 검출이 이루어져야 한다. 기존의 경계선 검출기법들은 조명 변화에 따라 그 성능의 변화가 크게 발생하였다. 이는 차선과 도로의 사이의 값의 차이가 조명 조건에 따라 변하기 때문이다. 따라서 본 논문에서는 영상 분석을 통하여 경계선을 판단하는 값을 조절함으로써 환경에 적응적인 경계선 추출 방법을 제안한다. 차량 주행 영상에서 제안한 방법과 기존의 경계선 검출 기법을 적용하여 성능을 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.