• Title/Summary/Keyword: 적상추

Search Result 325, Processing Time 0.031 seconds

Transformation of Lettuce (Lactuca sativa L.) Using Cold Regulated Gene (BN115) (저온 관련 유전자를 이용한 상추 (Lactuca sativa L.)의 형질전환)

  • 정재훈;양덕춘;장홍기;백기엽
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • Explants of lettuce (Lactuca sativa L.) were co-cultivated with Agrobacterium tumifacience GV 3101 strain containing nptII gene and cold regulated gene (BN115) from Brassica napus for transformation. Multiple shoots were obtained from the explants in the selection medium (MS basal medium supplemented with 100 mg/L kanamycin, 500 mg/L carbenicillin, 0.1 mg/L NAA, 0.5 mg/L kinetin) after 3 to 4 weeks of co-culture. The putative transgenic shoots were transferred to rooting medium (1/2 MS basal medium supplemented with 100 mg/L kanamycin and 250 mg/L carbenicillin). The selected shoots were tested with PCR analysis using nptll, BN115 primers whether cold-regulated gene was introduced to genome of the plants. The vir G primers were particularly used to check contamination of Agrobacterium during PCR analysis. The nptII and BN115 primers produced the specific PCR bands in the putative transgenic lines but the vir G primers did not. These results confirmed that the PCR products were not the result of contamination with Agrobacterium. Additionally the Southern analysis of the PCR products and RT-PCR analysis proved that the cold-regulated gene was successfully integrated and transcribed in the putative transgenic lettuce plants.

  • PDF

Growth and Anthocyanins of Lettuce Grown under Red or Blue Light-emitting Diodes with Distinct Peak Wavelength (상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌)

  • Lee, Jae Su;Kim, Yong Hyeon
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.330-339
    • /
    • 2014
  • Growth and anthocyanins of lettuce (Lactuca sativa L., 'Mid-season') grown under LED lamps with blue light in the range of 430-470 nm or with red light in the range of 630-670 nm were analyzed in this study. Cool-white fluorescent light was used a s the control. P hotosynthetic photon flux, p hotoperiod, air temperature, relative humidity, and $CO_2$ concentration in a closed plant production system were $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 16/8 hours (day/night), $22/18^{\circ}C$, 70%, and $400{\mu}mol{\cdot}mol^{-1}$, respectively. At 21 days after light quality treatment, growth characteristics and anthocyanins content of lettuce as affected by the peak wavelength of blue or red LED were significantly different. Among peak wavelengths treated in this stusy, R1 treatment (peak wavelength 634 nm) and R6 treatment (peak wavelength 659 nm) were effective for increasing leaf width, leaf area, shoot fresh weight, and photosynthetic rate of lettuce. B5 treatment (peak wavelength 450 nm) and B4 treatment (peak wavelength 446 nm) increased the anthocyanins concentration and chlorophyll content in lettuce leaves, respectively. Anthocyanins in lettuce leaves increased linearly with decreasing hue value of leaf color and with increasing SPAD value of lettuce leaves. From these results, it was concluded that the red LED with peak wavelengths of 634 nm and 659 nm and the blue LED with peak wavelengths of 450 nm can be used as potential light spectra for increasing the yield and anthocyanins accumulation of leafy vegetable.

Applicable Properties of Electrolyzed Acid-Water as Cleaning Water (세정수로서의 전해산화수 적용 특성)

  • 정진웅;정승원;김명호
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.395-402
    • /
    • 2000
  • To enlarge application field of electrolyzed acid-water(EAW) on food industry, the changes of EAW properties by storage conditions and heating were investigatet. It was showed that storing EAW in closed container is mon effective to keep up the oxidation-reduction potentials(ORP), hyperchloride content and pH than stored in opened ones. ORP of EAW stored in closed container could be kept mon than 1 month as 1,150 mV levels. Ruing heating from 2$0^{\circ}C$ to 95$^{\circ}C$, ORP was increased to 1,150 mV levels at 95$^{\circ}C$ after gradual decrease to 5$0^{\circ}C$. Tyrosinase activity was decreased approximately to 26%~35% in EAW having a 950 mV~1,140 mV ORP. Also it was confirmed that EAW has anti-browning effect as sliced apple and potato, and their juices treated with EAW had conspicous difference in their $\Delta$E value. 12 kinds of pesticides such as aldrine, capful diazinon, diedrin, $\alpha$-endosulfan $\beta$-endosulfan, endosulfan sulfate, endrin, $\alpha$-BHC, o,p'-DDT, procymidone, PCNB added in EAW were recovered from ND~73.6% comparing to ones added in distilled water. The recovered amounts of pesticides, procymidone and diazinon in lettuce after soaking in EAW were 1.12 ppm and ND, compared with those of amounts soaked in distilled water were 3.67 ppm and 3.05 ppm respectively. So, it seems that EAW has potentials to promote the degradation of pesticides.

  • PDF

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps (방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석)

  • Lee, Jae Su;Nam, Sang Woon;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.400-407
    • /
    • 2013
  • This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

Changes in Carotenoid and Anthocyanin Contents, as well as Antioxidant Activity during Storage of Lettuce (저장에 따른 상추의 카로티노이드와 안토시아닌 함량 및 항산화능 변화)

  • Park, Woo Sung;Kim, Hye Jin;Chung, Hye-Jin;Chun, Man Seog;Kim, Seong Tae;Seo, Seung Yeon;Lim, Seong Ho;Jeong, Yeong Hak;Chun, Jeewon;An, Sun Kyoung;Ahn, Mi-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1325-1332
    • /
    • 2015
  • Lettuce (Lactuca sativa) is an important dietary leafy vegetable that is primarily consumed as a fresh or salad material. It has a number of cultural varieties with green and/or red color. Carotenoids and anthocyanins are known to be responsible for these two colors, respectively. In this study, carotenoid and anthocyanin contents were determined to evaluate the stability of these functional pigments during storage at home. Analyses were carried out at the beginning, 3, 6, 9, and 12 days after harvest. In the course of storage at room temperature, total carotenoid levels rapidly decreased, and the decrease was found to be greatest during the first 3 days. Meanwhile, carotenoid level slightly changed within the first 9 days at $4^{\circ}C$ after harvest. This result suggests that carotenoids in green lettuce are more stable when refrigerated than at room temperature. Meanwhile, total anthocyanin content in red lettuce did not significantly decrease during storage at room temperature and $4^{\circ}C$, which indicates that anthocyanins have higher stability during storage compared with carotenoids in green lettuce. Anthocyanin extract exhibited higher antioxidant activity than carotenoid extract based on 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS) radical scavenging assay. Antioxidant activity of anthocyanin extract may also be estimated directly by the presence of another potent hydrophilic antioxidant compound, which is ascorbic acid in this extract. In addition, anthocyanin extract showed about a 5-fold higher amount of anthocyanins than carotenoids in the carotenoid extract. The high correlation between carotenoid content with ABTS radical scavenging activity indicates that ABTS assay is more suitable than 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay for detecting antioxidant capacity of carotenoid extract from lettuce.

Effect of Medium, Soil, and Irrigation Water Contaminated with Escherichia coli and Bacillus cereus on the Microbiological Safety of Lettuce (Escherichia coli 와 Bacillus cereus에 오염된 상토, 토양 및 관개용수가 상추의 미생물 안전에 미치는 영향)

  • Kim, Se-Ri;Lee, Seo-Hyun;Kim, Won-Il;Kim, Byung-Seok;Kim, Jun-Hwan;Chung, Duck-Hwa;Yun, Jong-Chul;Ryu, Kyoung-Yul
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.442-448
    • /
    • 2012
  • Many outbreaks of food-borne illnesses have been associated with the consumption of fresh vegetables and fruits contaminated with food-borne pathogens. Contaminated medium, manure and irrigation water are probable vehicles for the pathogen in many outbreaks. The aim of this study was to determine the potential transfer of Escherichia coli and Bacillus cereus from medium and soil fertilized with contaminated compost or irrigation with contaminated water to the edible parts of lettuce. Moreover, survivals of the two pathogens on lettuce contaminated medium, soil and irrigation water were estimated. Lettuce seeds were planted in medium contaminated with 7.5 log colony forming unit (CFU)/g of E. coli and B. cereus. Seedlings grown in the contaminated medium were transplanted in soil fertilized with contaminated pig manure compost or uncontaminated soil. Contaminated irrigation water with E. coli and B. cereus at 8.0 log CFU/mL was applied only once on the plant by sprinkle irrigation and surface irrigation. Although E. coli and B. cereus in medium and sprouted lettuce after planting seeds were reduced as time passed, these pathogens survived in seedling raising stage for extended periods. The numbers of E. coli and B. cereus in lettuce grown on contaminated soil were detected over 4.0 log CFU/g for 21 days. The numbers of E. coli and B. cereus in lettuce applied by sprinkle irrigation were higher than those of surface irrigation by 5.0 log CFU/g. Our results indicated that contaminated medium, soil and irrigation water can play an important role in the presence of food-borne pathogens on vegetables.

Effects of Residues and Extracts of Leaf and Root Vegetables on the Germination and Growth of Cucumber and Tomato (채소류의 잔유물과 추출물이 오이와 토마토의 발아 및 초기생장에 미치는 영향)

  • Park Kuen Woo;Lee Jeong Hun;Kim Min-Jea;Won Jae Hee
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.200-208
    • /
    • 2004
  • Effects of cucumber and tomato seed germination by previous leaf and root vegetables (cabbage, radish, welsh onion, lettuce) residue in soil were tested in pot condition. Overall, suppression effect of welsh onion residue was the greatest in 4 tested crop residue and followed by radish, cabbage and lettuce, but lettuce residue didn't have effect on cucumber seed germination. Suppression were maintained ca. 20 days but after the time point, growth of cucumber and tomato were enhanced. Enhancing effect of welsh onion residue was the greatest in 4 tested crops residues and followed by radish, cabbage and lettuce. As a conclusion, residue of welsh onion, radish and cabbage were suppressed the germination of cucumber and tomato seeds but enhanced growth after 20 days of treatment. To verify the effective concentration of residue on suppression of germination and growth of radicle of cucumber and tomato, plant extract of welsh onion, radish, cabbage and lettuce were diluted as 5, 10, 17, 23, 35, 50, and $65\%$, and then tested. In low concentration treatment, 5, 10, 17, and $23\%$, all 4 crop extracts didn't suppress cucumber seed germination. High concentration of lettuce extract, 35, 50, and $65\%$, cucumber seed didn't germinate at all. In case of welsh onion extract, only $65\%$ treatment suppressed cucumber seed germination. In low concentration treatment, 17, and $23\%$, only the welsh onion extract suppressed young radicle. In case of high concentration treatment, except $35\%$, all four crops extract suppressed cucumber radicle growth. In low concentration treatment, tomato seed germination was suppressed by lettuce extract only but in high concentration treatment, 35, 50, and $65\%$, all extracts suppressed germination. Especially higher than $50\%$ treatment, tomato seed didn't germinate at all. Radicle growth was highly suppressed in welsh onion and lettuce extract, higher than $23\%$ concentration. As conclusion, leaf and root vegetable extracts suppressed cucumber and tomato seed germination and in high concentration, also suppressed radicle growth.

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Spectral Response of Red Lettuce with Zinc Uptake: Pot Experiment in Heavy Metal Contaminated Soil (아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험)

  • Shin, Ji Hye;Yu, Jaehyung;Kim, Jieun;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This study investigates the spectral response of red lettuce (Lactuca sativa var crispa L.) to Zn concentration. The control group and the experimental groups treated with 1 mM(ZnT1), 5 mM(ZnT2), 10 mM(ZnT3), 50 mM(ZnT4), and 100 mM(ZnT5) were prepared for a pot experiment. Then, Zn concentration and spectral reflectance were measured for the different levels of Zn concentration in red lettuce. The Zn concentration of the control group had the range of 134-181 mg/kg, which was within the normal range of Zn concentration in uncontaminated crops. However, Zn concentration in the experimental group gradually increased with an increase in concentration of Zn injection. The spectral reflectance of red lettuce showed high peak in the red band due to anthocyanin, high reflectance in the infrared band due to the scattering effect of the cell structure, and absorption features associated with water. As Zn concentration in red lettuce leaves increased, the reflectance increased in the green and red bands and the reflectance decreased in the infrared band. The correlation analysis between Zn concentration and spectral reflectance showed that the reflectance of 700-1300 nm had a significant negative correlation with Zn concentration. The spectral band is a wavelength region closely related to the cell structure in the leaf, indicating possible cell destruction of leaf structure due to increased Zn concentration. In particular, 700-800 nm reflectance of the infrared band showed the strongest correlation with the Zn concentration. This study could be used to investigate the heavy metal contamination in soil around mining and agriculture area by spectroscopically recognizing heavy metal pollution of plant.

The Effect of Chitosan and Wood Vinegar Treatment on the Growth of Eggplant and Leaf Lettuce (키토산과 목초액 처리가 가지 및 잎상추의 생육에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Cho, Mi-Yong;Seo, Jung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.4
    • /
    • pp.437-452
    • /
    • 2007
  • From the experiments on the effect of chitosan and wood vinegar, which are environment-friendly materials, on the growth of eggplant and leaf lettuce, the following results were obtained. 1. The effect of chitosan and wood vinegar treatment on the growth of eggplant 1) There was no difference in soil component elements before and after treatment with chitosan and wood vinegar. The total number of microorganisms tended to increase after treatment with chitosan and wood vinegar, while the number of bacteria increased among microorganisms. However, there was no consistent tendency in the number of Acinomycetes, fungi, and trichodema between treatments. 2) The growth and the yield of eggplant increased compared with the control plot in both the chitosan-treated plot and the wood vinegar-treated plot. However, there was no significant difference between the treatments. The yield of eggplant per 10a increased in chitosan- and wood vinegar-treated plots compared with the controlled plot. There was no significant difference in treatments, however, the plot treated with 800 times-diluted solution showed a higher growth. 2. The effect of chitosan and wood vinegar treatment on the growth of leaf lettuce 1) There was no difference in soil component elements before and after treatment with chitosan and wood vinegar. The number of bacteria increased among microorganisms. However, there was no consistent tendency in the number of Acinomycetes, fungi, and trichodema between treatments. 2) The growth of leaf lettuce in both chitosan-treated plot and wood vinegar-treated plot increased compared with the control plot, however, there was no significant difference between the treatments. On the whole, the plot treated with greater concentration showed a higher growth.

  • PDF