• Title/Summary/Keyword: 적분격자

Search Result 97, Processing Time 0.025 seconds

Detonation Wave Propagation Through a T-type Branch Tube in Combustion Wave Rocket Igniter (연소파 로켓 점화기의 T형 분기관내 데토네이션파 전파)

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.221-224
    • /
    • 2003
  • A numerical study is carried out for the detonation wave propagation through a T-branch. The T-branch is a crucial part of the combustion wave igniter, a novel concept of rocket ignition system aimed for the simultaneous ignition of multiple combustion chambers by delivering detonation waves. Euler equation and induction parameter equation are used as governing equations with a reaction term modeled from the chemical kinetics database obtained from a detailed chemistry mechanism. Second-order accurate implicit time integration and third-order space accurate TVD algorithm were used for solution of the coupled equations. Over two-million grid points enabled the capture of the dynamics of the detonation wave propagation including the degeneration and re-initiation phenomena, and some of the design factors were be obtained for the CWI flame tubes.

  • PDF

Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

Numerical Analysis and Control of Open Cavity Flow (열린 공동 유동의 수치적 모사 및 Jet Blowing 을 이용한 제어)

  • Chang, Kyung-Sik;Park, Seung-O;Choi, Hun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.101-108
    • /
    • 2002
  • A numerical simulation of an incompressible cavity flow is conducted. Two dimensional Navier-Stokes equations are integrated using staggered grid and a finite volume method with C-QUICK scheme for spatial derivatives and fully implicit scheme for the time derivatives. SIMPLE-C algorithm is employed to solve the pressure field. Computational results show that the third eddy is generated in the shear layer mode but not in the steady mode. This signifies that the third eddy plays an important role in cavity flow stability. As a means to control the flow, jet blowing is applied to a position below the cavity upstream edge. Effects of flow control parameters on the stability such as the frequency, the phase, and the velocity magnitude are reported.

Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

A Study on the Prediction of Flow near the Confluence of Banbyeoncheon by Using the KU-RLMS Model (KU-RLMS 모형을 이용한 반변천 합류부 흐름 예측에 관한 연구)

  • Lee, Keum-Chan;Lee, Nam-Joo;Lyu, Si-Wan;Yeo, Hong-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1209-1213
    • /
    • 2007
  • 하천 수치모델링을 통한 흐름, 오염물질 거동, 지형변화 해석 등은 효율적인 하천 수질 관리를 위해서 상당히 중요한 부분은 차지한다. 수질이나 지형변화를 보다 정확하게 예측하기 위해서는 하천 흐름 예측의 정확도 향상이 중요한 역할을 하게 된다. 본 연구는 평면 이차원 하상변동 및 수질예측 수치모형인 KU-RLMS 모형을 이용하여 낙동강 상류의 반변천 합류부의 흐름 특성을 규명하고, 수질 모형을 수행하기 위한 흐름 계산 결과를 제공하기 위해 수행하였다. KU-RLMS 모형은 하천 및 저수지의 국부적인 수리, 수질, 유사이동 해석을 위해 개발된 평면 이차원 비정상 수치모형이다. 직사각형 격자를 사용하는 유한차분법의 단점을 보완하기 위해, 흐름 계산을 위한 지배방정식은 3차원 Reynolds 방정식으로부터 수심적분된 2차원 연속방정식과 운동량방정식을 불규칙한 경계를 현실적으로 모사할 수 있는 직교곡선 좌표계로 변환한 방정식을 사용한다. 수치모형 적용을 위한 현황분석으로 안동 및 임하 조정지댐의 방류량, 안동 수위관측소의 자료를 분석하였다. 흐름 모형을 보정하기 위해 안동대교 지점에서 횡유속 분포를 측정하였으며, 이 결과를 사용하여 흐름 모형의 매개변수인 Manning 계수와 공간가중계수를 추정 및 검증하였다. 안동다목적댐과 임하다목적댐의 방류량을 고려하여 수치모의조건을 결정하였으며, 각 조건에 대한 흐름 변화 특성을 분석하였다.

  • PDF

Development of the Geoid Model in Korean Peninsula referred to Bessel Ellipsoid (베셀타원체상에서의 한반도 지오이드 모델의 개발)

  • 이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.213-223
    • /
    • 1998
  • This paper deals with the geoid modelling in and around Korean peninsula referred to Bessel ellipsoid. Several useful data were used to compute precise geoidal heights referred to GRS80 by remove and restore technique and FFT technique was used to evaluate Stokes' integral. All grid point elevations extracted from GTOPO 30 and Bessel coordinates of all grid point were computed through coordinates transformation by applying three transformation parameters. Finally, geoidal heights referred to Bessel ellipsoid were calculated by geometric method. As the results of this study, a precise gravimetric geoid model referred to GRS80 (KOGGDM33) and geoid model referred to Bessel ellipsoid(KOBGDM33) in and around Korean peninsula were developed. KOBGDM33 shows the gradual distribution of geoidal heights from -91.8 m in Yongampo to -39.0 m in the straits of Korea.

  • PDF

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

Free Vibration Analysis of Compressive Tapered Members Resting on Elastic Foundation Using Differential Quadrature Method (미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동 해석)

  • 이병구;최규문;이태은;김무영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.629-638
    • /
    • 2002
  • This paper deals with the free vibration analysis of compressive tapered members resting on elastic foundation using the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

A Numerical Model of Nonlinear Stream Function Wave Theory by the Least Squares Method (최소자승법을 사용한 유량함수 비선형 파랑이론의 수치모형)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.340-352
    • /
    • 1994
  • A numerical model of nonlinear stream function wave theory evolved from Dean's model (1965) is presented. The stream function theory has been evaluated to be an accurate and useful tool for engineering applications. Effects of damping coefficient employed in a linearized simultaneous equation and number of points in the numerical integration of model on numerical solutions are assessed. Most accurate wave characteristics calculated by the present model are tabulated using revised Dean's Table (Chaplin, 1980) input parameters. Since the well-known feature of nearly breaking waves that with increasing wave steepness the wave length as well as integral properties have a maximum prior to the limiting wave height is represented by the model, the accuracy of model can be proved.

  • PDF