• Title/Summary/Keyword: 적분간격

Search Result 70, Processing Time 0.032 seconds

Accuracy Analysis of GLONASS Orbit Determination Strategies for GLONASS Positioning (GLONASS 측위를 위한 위성좌표 산출 정확도 향상 방안)

  • Lee, Ho-Seok;Park, Kwan-Dong;Kim, Hye-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.573-578
    • /
    • 2010
  • Precise determination of satellite positions is necessary to improve positioning accuracy in GNSS. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration method and their accuracy dependence on the integration step and the integration time was analyzed. The 3D RMS (Root Mean Square) differences between the results from I-second integration step and 300-second integration step was about 3 cm, but the processing time was one hundred times less for the I-second integration time case. For trials of different integration times, the 3D RMS errors were 8.3 m, 187.3 m, and 661.5 m for 30-, 150-, and 300-minutes of integration time, respectively. Though this integration-time analysis, we concluded that the accuracy gets higher with a shorter integration time. Thus we suggest forward and backward integration methods to improve GLONASS positioning accuracy, and with this method we can achieve a 5-meter level of 3-D orbit accuracy.

Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling (전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the two-dimensional (2D) modeling of electrical method, the potential in the space domain is reconstructed with the calculated potentials in the wavenumber domain using inverse Fourier transform. The inverse Fourier integral is numerically evaluated using the transformed potential at different wavenumbers. In order to improve the precision of the integration, either the logarithmic or exponential approximation has been used depending on the size of wavenumber. Two numerical methods have been generally used to evaluate the integral; interval integration and Gaussian quadrature. However, both methods do not consider the distance from the current source. Thus the resulting potential in the space domain shows some error. Especially when the distance from the current source is very small or large, the error increases abruptly and the evaluated potential becomes extremely unstable. In this study, we developed a new method to calculate the integral accurately by introducing the distance from the current source to the rescaled Gauss abscissa and weight. The numerical tests for homogeneous half-space model show that the developed method can yield the error level lower than 0.4 percent over the various distances from the current source.

The Derivation of Error Estimates with Various Shape Functions for Time Integration Using Finite Element Approach (유한요소 기법을 적용한 시간적분법에서 형상함수에 따른 오차추정치 유도)

  • 장인식;맹주원;김동호
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.187-196
    • /
    • 1998
  • 불연속 갤러킨 정식화에 기초를 둔 시간적분법에 대하여 시간을 변수로 한 유한요소적 접근법을 시도하였다. 단일 형상함수와 두 형상함수 정식화에 대해 각각 선형, 이차 형상함수를 적용하여 모두 네 종류의 시간적분법을 유도하였으며, 각 방법에 대하여 시간시텝의 증가에 따른 변위와 속도의 관계를 나타내는 증폭행렬을 계산하였다. 유도된 방법들의 성능을 평가하기 위하여 부하가 갑자기 변화는 진동 문제를 해석하고 변위의 오차를 비교하였다. 네 가지의 방법에 대하여 국부 오차 추정치를 개발하였으며, 오차 추정치의 정확도를 수치예를 이용하여 평가하였다. 단일 형상함수 정식화에서 이차 형상함수를 이용한 오차 추정치가 실제 국부오차를 잘 나타내었으며 유도된 오차 추정치는 시간간격제어 기법에서 시간간격의 크기를 결정하는 척도로 이용 가능하다.

  • PDF

Turbulent Flow over 2-D Rectangular-Shaped Roughness Elements with Various Spacings(Part 2 : Turbulence, Friction Velocity and Integral Parameters) (사각단면을 갖는 환경 거칠기 요소의 거칠기 간격에 따른 유동 변화(제2보 : 난류, 마찰속도 및 적분변수))

  • Hyun B.S.;Suh E.J.;Moon J.S.;Kim G.W.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • This study deals with the flow over a flat plate with repeated roughness elements of 2-dimensional rectangular shape, which can be applied into the study on the natural geographical roughness and the turbulent flow on roughened solid surface. Part 1 of the study showed that the ratio between the spacing and the height of roughness elements plays a crucial role in developing the flow pattern near wall surface. The present study complements the turbulence characteristics, the utilization of friction velocity as well as integral parameters. Results confirmed that k-type roughness(s/H=7 or 14) is certainly a more effective means than d-type roughness (s/H=3.5) in thickening the viscous region.

  • PDF

Effects of multi-functional fabric on heart rate variabilitv. emotion and psychological variables (특수기능 성섬유가 심장박동간격, 감성 및 심리적 변수에 미치는 효과)

  • 이명수;고경찬;문성록
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.201-204
    • /
    • 2002
  • 심장박동간격은 최근 교감신경과 부교감신경의 안정을 알아보는 척도로 쓰이고 있다. 본 연구 목적은 심장박동변이 측정을 통하여 항균작용 및 원적외선 방사를 하는 특수기능성 직물이 인체의 자율신경계, 감성 및 심리적 변수에 미치는 효과를 알아보는 데에 있다. 총 10명의 피험자를 대상으로 하여 심장박동 간격을 조사하고 시각상사척도를 이용하여 우울, 불안, 피로 그리고 스트레스정도를 착용 전후에 각각 조사하였다. 그 결과 저주파수 적분값과 고주파수 적분값의 비가 착용 전에 비해 착용 후 통계적으로 유의한 차이가 나타났으며 (p<0.05) 우울, 불안, 피로, 스트레스의 값이 유의하게 감소하였다(p<0.05). 본 연구를 통하여 항균, 원적외선 방사를 하는 특수기능성 섬유가 감성이나 자율신경계에 영향을 준다는 것을 관찰할 수 있었다.

Stability and accuracy for the trapezoidal rule of the Newmark time integration method with variable time step sizes (가변시간간격을 갖는 Newmark 시간적분법의 사다리꼴법칙에 대한 안정성과 정확도)

  • Noh, Yong-Su;Chung, Jin-Tae;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1712-1717
    • /
    • 1997
  • Stability and accuracy for the trapezoidal rule of the Newmark time integration method are analyzed when variable time step sizes are adopted. A new analytic approach to stability and accuracy analysis is also proposed for time integration methods with variable time step sizes. The trapezoidal rule with variable time step sizes has the "actual" unconditional stability which is the same as that of the method with constant time step sizes. However, the method with variable time step sizes is first-order accurate while the method with constant time step sizes is second-order accurate. accurate.

Minimum Density Power Divergence Estimation for Normal-Exponential Distribution (정규-지수분포에 대한 최소밀도함수승간격 추정법)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.397-406
    • /
    • 2014
  • The minimum density power divergence estimation has been a popular topic in the field of robust estimation for since Basu et al. (1988). The minimum density power divergence estimator has strong robustness properties with the little loss in asymptotic efficiency relative to the maximum likelihood estimator under model conditions. However, a limitation in applying this estimation method is the algebraic difficulty on an integral involved in an estimation function. This paper considers a minimum density power divergence estimation method with approximated divergence avoiding such difficulty. As an example, we consider the normal-exponential convolution model introduced by Bolstad (2004). The estimated divergence in this case is too complicated; consequently, a Laplace approximation is employed to obtain a manageable form. Simulations and an empirical study show that the minimum density power divergence estimators based on an approximated estimated divergence for the normal-exponential model perform adequately in terms of bias and efficiency.

Numerical Integration based on Harmonic Oscillation and Jacobi Iteration for Efficient Simulation of Soft Objects with GPU (GPU를 활용한 고성능 연체 객체 시뮬레이션을 위한 조화진동 모델과 야코비 반복법 기반 수치 적분 기술)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.123-132
    • /
    • 2018
  • Various methods have been proposed to efficiently animate the motion of soft objects in realtime. In order to maintain the topology between the elements of the objects, it is required to employ constraint forces, which limit the size of the time steps for the numerical integration and reduce the efficiency. To tackle this, an implicit method with larger steps was proposed. However, the method is, in essence, a linear system with a large matrix, of which solution requires heavy computations. Several approximate methods have been proposed, but the approximation is obtained with an increased damping and the loss of accuracy. In this paper, new integration method based on harmonic oscillation with better stability was proposed, and it was further stabilized with the hybridization with approximate implicit method. GPU parallelism can be easily implemented for the method, and large-scale soft objects can be simulated in realtime.

An Automatic Time Stepping Algorithm Using a Prior Error Estimator in Structural Dynamics (구조동역학 문제에서 전단계 오차추정치를 이용한 자동시간간격 조정 알고리듬)

  • 조은형;정진태
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1240-1246
    • /
    • 1999
  • A prior error estimator which is solving structural dynamic problems and which is based on the generalized-method, is developed. Since the proposed error estimator is computed with only previous information, the time step size can be adaptively selected without the feedback mechanism. This paper shows that the automatic time stepping algorithm using the error estimator performs an efficient time integration. To verify its efficiency, several examples are numerically investigated.

  • PDF

Stable and Easily Parallizable Cloth Animation Method (안정적이고 병렬화가 용이한 옷감 애니메이션 기법)

  • Kang Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.995-1001
    • /
    • 2005
  • Implicit Integration has become a standard approach to efficient cloth animation, and it guarantees the stability of the system so that large steps can be used. Therefore, it is regarded as the best method for the real-time or interactive animation of cloth. Since the implicit method was introduced for stable cloth animation, various cloth animation techniques based on the method have been proposed. It is now possible to generate the real-time animation of cloth model with thousands of mass-point in general PC environments. Although the implicit method guarantees the stability, the implementation of the implicit method is generally more difficult than that of the explicit method. Even worse, it is very difficult to parallelize the computation process of the implicit method. The cloth animation with implicit method can be formalized as a linear system solving. In this paper we propose an stable and efficient cloth animation techniques based on the implicit method. The proposed method can be easily parallelized. Self-collision is another important issue in cloth animation, we also propose an efficient self-collision avoidance techniques.