• Title/Summary/Keyword: 적니흡착제

Search Result 7, Processing Time 0.02 seconds

Synthesis of Pellet-Type Red Mud Adsorbents for Removal of Heavy Metal Ions (중금속이온제거를 위한 입자형 적니흡착제의 제조)

  • 김정식;한상원;황인국;배재흠;최우진
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Red mud is generated as a by-product in the production of $Al(OH)_{3}/Al_2O_3$ from bauxite ore. In this study the pellet-type adsorbents have been made from the red mud, and their adsorption capacities of heavy metal ions have been tested. The pellet-type adsorbents were synthesized to utilize the excellent adsorption capacity of the powder-type adsorbent for industrial application. The pellet-type adsorbents were prepared by mixing several kinds of additives with the red mud. It is found that the pellet-type adsorbent, made by sintering a mixture of red mud (96.0 wt%), polypropylene (2.5%), fly ash (0.5 w%), and sodium metasilicate(1.0 wt%) at $1200^{\circ}C$ for 30 minutes, has the highest adsorption capacity. in this work, the two kinds of pellet-type adsorbents (bead-type, crushed-type) were prepared. The crushed-type adsorbent was found to show a better adsorption/desorption performance than the bead-type adsorbent. The crushed-type adsorbent showed a good adsorption capacity of $Pb^{2+}$ like the powder-type adsorbent.

  • PDF

Preparation of Adsorbents Reutilizing the Leached Sludge of Red Mud (적니 침출슬러지를 재활용한 흡착제의 제조)

  • Lee, Jae-Rok;Hwang, In-Gook;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.171-174
    • /
    • 2006
  • The adsorbent for removal of heavy metal ions is prepared reutilizing the leached sludge generated in process of making the red mud coagulant we have develope. The pellet-type adsorbent is made by heat-treating a mixture of 10g of the leached sludge, 1g of kaolin, and 2 g of sodium silicate solution at $600^{\circ}C$ for 2 hours. In experiments of batch adsorption, the adsorbent shows good performance in adsorption of $Pb^{2+}$ ion.

  • PDF

A Study on Adsorbent Munufacture for Removal of VOC by Recycling of Paper Sludge and Red mud (제지슬러지와 적니를 이용한 VOC 제거를 위한 흡착제 개발 연구)

  • Min, Byong-Hun;Kim, Jeong-Ho;Chung, Chan-Kyo;Suh, Sung-Sup;Kang, Sung-Won
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2002
  • Recycling method of red mud, byproduct from the aluminium manufacturing process, and paper sludge was investigated in order for them to be utilized as the adsorbent for the removal of volatile organic components(VOCs). Either high density polyethylene(HDPE) or low density polyethylene(LDPE) was added to facilitate the manufacture of adsorbents. The utilization of HDPE in the adsorbents increased the adsorption capacity due to the good physical properties, such as, BET and true density, compared with LDPE. BET values of the manufactured adsorbents were much lower than the commercial activated carbon ($10^{-2}-10^{-3}$). It may be due to the fact that the time for decomposition of the paper sludge was not enough during the manufacturing of adsorbents. But the specific adsorption capacity of the manufactured adsorbents (mole adsorbed per unit surface area) had much higher value than the commercial activated carbon (10-100). Therefore, it is important that BET of manufactured adsorbents needs to be increased to obtain the same adsorption capacity as the commercial activated carbon.

  • PDF

Removal of Synthetic Heavy Metal ($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$) from Water Using Red Mud and Lime Stone (적니와 석회석을 이용한 혼합 중금속($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$)의 제거)

  • Kang, Ku;Park, Seong-Jik;Shin, Woo-Seok;Um, Byung-Hwan;Kim, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.566-573
    • /
    • 2012
  • This study examined the removal rate of heavy metals from synthetic control water using red mud and lime stone. Overall, the percent of absorption obtained in this study for the red mud treatment was 94.0% ($Pb^{2+}$), 67.1% ($As^{3+}$), 37.5% ($Cu^{2+}$), and 36.6% ($Cr^{6+}$), while that of lime stone was $Pb^{2+}$ (30.8%), $Cu^{2+}$ (16.5%), $Cr^{6+}$ (11.5%), and $As^{3+}$ (8.9%). The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models, the equilibriuim adsorption of $Cr^{6+}$ and $Pb^{2+}$ obeys Freundlich isotherm model, while the adsorption of $Cu^{2+}$ obeys only Langmuir model. The results also showed that adsorption rate slightly increased with increasing pH from 5 to 9. Interestingly, this trend is similar to results obtained as function of loading amount of red mud. Meanwhile, an unit adsorption rate was slightly decreased. For lime stone, it did not much change in adsorption as function of treatment amount. Consequently, it was concluded that the absorbents can be successfully used the removal of the heavy metals from the aqueous solutions.

Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater (해수에서 6가 크롬 제거를 위한 흡착제로서의 산처리 적니 적용성 검토)

  • Kang, Ku;Um, Byung-Hwan;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.17-23
    • /
    • 2013
  • Six-valent chromium ($Cr^{6+}$) is a highly toxic pollutant, supplied in a variety of industrial activities such as leather tanning, cooling tower blowdown, and plating. Herein, we investigated the removal of $Cr^{6+}$ from aqueous phase using low-cost adsorbents. Steel slag, montmorillonite, illite, kaolinite, red mud, and acid treated red mud with 0.5, 1.0, and 2.0 M HCl were used as adsorbent for the removal of $Cr^{6+}$ and the results showed that acid treated red mud with 2.0 M HCl (ATRM-2.0 M) had higher adsorption capacity of $Cr^{6+}$ than other adsorbents used. Accordingly, $Cr^{6+}$ removal by ATRM-2.0 M were studied in a batch system with respect to changes in initial concentration of $Cr^{6+}$, initial solution pH, adsorbent dose, adsorbent mixture, and seawater. Equilibrium sorption data were described well by Freundlich isotherm model. The influence of initial solution pH on $Cr^{6+}$ adsorption was insignificant. The use of the ATRM-2.0 M alone was more effective than mixing it with other adsorbents including red mud, zeolite, oyster shell, lime stone, and montmorillonite for the removal of $Cr^{6+}$. The $Cr^{6+}$ removal of the ATRM-2.0 M was slightly less in seawater than deionized water, resulting from the presence of anions in seawater competing for the favorable adsorption site on the surface of ATRM-2.0 M. It was concluded that the ATRM-2.0 M can be used as a potential adsorbent for the removal of $Cr^{6+}$ from the aqueous solutions.

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.