• Title/Summary/Keyword: 저 질소산화물 버너

Search Result 14, Processing Time 0.025 seconds

Experimental Study on 15MW partially premixed Low NOx burner (15MW급 부분예혼합 초저 NOx 가스연소기에 관한 실험적 연구)

  • Kwon, Minjun;Shin, Myongchul;Kim, Sewon;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.123-125
    • /
    • 2012
  • In this study, combustion characteristics for 20t/h water tube boilers are studied. The burner by applying The fuel staging technology, the air staging technology, the partially premixed technology, the separated flame technology and the flame inner recirculation technology was designed. This study was to determine the combustion characteristics for the three types of burners. It is found that the result of flame temperature measurement is less than $1300^{\circ}C$ at the all flame region. also, emissions of NOx and CO are found to be 15.8 ppm and 18.9 ppm, respectively.

  • PDF

Study on Computational Fluid Dynamics(CFD) simulation for NOx dispersion around combined heat and power plant (열병합발전소 질소산화물 확산에 관한 전산유체역학 simulation 연구)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • In order to deal with the globally increasing electric power demand and reduce $CO_2$ emission, complex thermoelectric power plants are being constructed in densely populated downtown areas. As the environmental regulations are continuously strengthened, various facilities like low NOx burner and SCR are being installed to reduce NOx emission. This study is applied using the TMS emission of $NO_2$ from combined heat and power plant located in Goyang-si Gyeonggi-do. Applying data to the computational fluid dynamics(CFD), and compared with the actual measurement results. It is judged that even though there might be differences between actual measurements and CFD results due to the instant changes of wind direction and wind speed according to measurement time during measurement period, modeling results and actual measurement results showed similar concentration at most forecasting areas and therefore, the forecasting concentration could be deducted which is close to actual measurement by calculating the contribution concentration considering the surrounding concentration in the future.

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry (시멘트 산업에서의 질소산화물 저감 기술 동향)

  • Seo, JunHyung;Kim, YoungJin;Cho, KyeHong;Cho, JinSang;Han, KyungHo;Yoon, DoYoung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.114-124
    • /
    • 2020
  • In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.

The Methods Calculating the Reduction Efficiency of Nitrogen Oxide for the Facilities Including the Low NOx Burners (저녹스 버너 설치 시설의 질소산화물 저감 효율 산정 방법)

  • Lee, Ki Yong;Talukder, Niladri
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.295-296
    • /
    • 2015
  • We presented the methods calculating the reduction efficiency of nitrogen oxide for the low $NO_x$ burner as the pollution prevention facilities. The standard $NO_x$ concentration was used on the emission factor of LNG, $3.7g/m^3$. The $NO_x$ reduction efficiency based on the $NO_x$ concentration was presented and the relationships between the $NO_x$ concentration and the emission factor or the specific heat emission factor were derived. These results could be accurately reflected on calculating the amount of the nitrogen oxide emissions. In addition, according to the arrangement of the low $NO_x$ burners the methods of applying their $NO_x$ reduction efficiency were proposed. The $NO_x$ reduction efficiency for the facilities consisting of the low $NO_x$ burners and the non-low $NO_x$ burners could be estimated with information about the reduction efficiency of each low $NO_x$ burners, the fuel consumption rate, and the heating value of fuel.

  • PDF