• Title/Summary/Keyword: 저항 저감

Search Result 373, Processing Time 0.034 seconds

An Experimental Stuty on Mass Concrete Durability & Hydration Heat Generation Characteristics according to Kinds of Cement & Form (시멘트 및 거푸집 종류에 따른 매스콘크리트의 내구성 및 수화발열특성에 관한 실험적 연구)

  • Kim, Kang-Min;Moon, Sang-Bong;Song, Yong-Soon;Kang, Suck-Hwa;Choi, Sam-Soon;Cho, Yong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.359-360
    • /
    • 2009
  • This Study is performed Mock-up test accounting for height of placement to review behavior of mass concrete according to kinds of cement & form. First, we measured hydration heat and show a different hydration heat generation characteristics as compared with each other. And we measured mortar outflow, the strength of concrete core and standard specimens, concrete's ability to resist chloride ion penetration in order to durability estimation of concrete. This study was aims to improve quality of mass concrete under marine environment.

  • PDF

An Evaluation on the Field Application and Resistance for the Shrinkage-Chloride Attack of Concrete containing High Durability Additivee (내구성개선제를 적용한 콘크리트의 수축-염해저항성 및 현장 적용특성 평가)

  • Kim, Do-Su;Khil, Bae-Su;Kim, Woo-Jae;Kim, Sung-Su;Jung, Yong;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.733-736
    • /
    • 2008
  • In this study, we developed durability promoting chemical agent(HD) that simultaneously improved resistance for chloride attack and shrinkage of concrete. This agent as typed aqueous solution containing organic and inorganic compounds applied to concrete mix(Bx0.6%, 1.2%) of seaside construction using SLG and then evaluated the effect on the shrinkage and chloride attack of concrete. By the addition of HD, it was elucidated that resistance for chloride attack and shrinkage were improved above 50% and 33% respectively than non-added concrete(Plain). This performance was confirmed through the Field-test applied HD(Bx0.6%) such as RCD construction.

  • PDF

Numerical Analysis on development of the Cooling System for E-Scooter Battery Pack (전동스쿠터용 배터리팩 냉각시스템 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.30-36
    • /
    • 2016
  • The battery pack which is a main component of E-scooter needs the cooling system because it is the matter of battery safety in spite of the incresing of charge efficiency due to decress the internal resistence in the condition of high temperature. The purpose of this study is to analyse the effects of cooling methods which is the control of air's inlet and outlet operating timing. When each battery had large temperature deviation in the battery pack, the difference of battery's performance and efficiency were appeared. In this study, the cooling performance of battery pack has been improved by changing the operation timing of inlet and outlet fan, it improved the performance and efficiency of battery. The numerical analysis using a commercial code ANSYS CFX version 17.0 were used for the study.

Analysis of Inrush Current Reduction Rate According to Insertion Resistance of the Superconducting Fault Current Limiter (초전도 한류기 투입저항 변화에 따른 여자돌입전류 저감률 분석)

  • Park, Se-Ho;Seo, Hun-Chul;Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.257-258
    • /
    • 2008
  • The inrush current of a transformer is a high-magnitude and harmonic-rich current generated when the transformer core is driven into saturation during energizing. The inrush current usually leads to undesirable effects, for example potential damage to the transformer, misoperation of a protective relay, and power quality deterioration in the distribution power system. Inrush current reduction is therefore important for power system operation. In this paper, to reduce the inrush current, the insertion resistance of the Superconducting Fault Current Limiter (SFCL) that is connected in series with the transformer in the distribution system is used. This paper implements the SFCL by using the Electromagnetic Transient Program-Restructured Version (EMTP-RV) to model the SFCL in the distribution system. The simulation results show the beneficial effects of the SFCL for reduction of the inrush current.

  • PDF

Harmonic Reduction in Three-Phase Boost Converter with Sixth Order Harmonic Injected PWM (6고조파 주입 PWM을 이용한 3상 승압형 컨버터 고조파저감)

  • 이정호;김재문;이정훈;원충연;김영석;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.176-183
    • /
    • 2000
  • In this paper, sixth order hannonic injected PWM for improving‘ input CWTent distortion of single switch t three phase boost converter is presented. Peliodic sixth order hmmonic ${\gamma}$oltage is inj<:ded in the control circuit t to var${\gamma}$ the duty ratio of the converter switch within one switching cycle. In the result, the input phase c currents are forced to track the input voltage and an 해most unity power factor is obtained. Expelimental r results are verified by converter operating at 400V /6kW with three phase 140V ~220V input and by C02 arc w welding machine which was nonlinear load with 3 $\phi$ 220V input.

  • PDF

Cutting of Concrete Block Using Detonating Cords (도폭선을 이용한 콘크리트 블록 절단 연구)

  • Kim, Jung-Gyu;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.17-25
    • /
    • 2019
  • The method to remove the head of the cast-in-place pile using the detonating cord and horizontal separation plate was proposed in this paper. Plain concrete block was fabricated. Through the blasting test of the concrete block, the charge weight and the burden required for cutting the pile head were identified. The degree of damage of concrete blocks after cutting the head was checked using AUTODYN 2D. As a result of the experiment, it was found that the concrete block was cut using the 10 g/m detonating cord and horizontal separation plate, and the directional cutting of the block using the horizontal separation plate and the block damage caused by the detonating cord were reduced.

An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck (대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구)

  • Kim, Chul-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).

Development of Intake Port for Range Extender Engine Using CFD Simulation (전산유체해석을 통한 RE엔진 흡기포트의 개발)

  • Kim, Chang-Su;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2575-2580
    • /
    • 2013
  • An intake port for Range Extender engine has been developed using CFD technique. Three dimensional intake port model has been built and computational analysis has been performed. Computed non-dimensional flow coefficient, swirl ratio and swirl number have been compared with the experimental result. Convex and concave curvature of the intake port have been optimized to reduce recirculation flow and flow resistance. Finally, the mean flow coefficient is 0.383 and the mean swirl number is 1.544. The intake port shows relatively excellent performance compared with those of general 2 valve engine system intake ports.

이종접합 태양전지의 전면 투명산화전도막의 역할과 태양전지 특성과의 상관관계에 관한 연구

  • An, Si-Hyeon;Kim, Seon-Bo;Jang, Gyeong-Su;Park, Hyeong-Sik;Jang, Ju-Yeon;Song, Gyu-Wan;Choe, U-Jin;Choe, Jae-U;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.605-605
    • /
    • 2012
  • 일반적으로 실리콘 이종접합 태양전지의 전면 투명산화막전도막에 요구되는 특성은 높은 투과도와 높은 전도도 특성이 요구되고 있다. 하지만 높은 전도도를 위해 carrier concentration을 높이게 되면 장파장 영역에서의 free-carrier absorption이 발생하여 투과도가 좋지 않게 되는 trade-off 관계에 있다. 그리고 일반적으로 투명산화전도막 두께 증가에 따라 전도도 상승은 투과도 하락을 가져와 태양전지의 효율 저감을 가져올 것이라고 생각되었다. 본 연구에서는 이러한 전면 투명산화전도막의 최적화에 관한 연구로써 박막 특성에 관한 분석과 태양전지 특성의 상관관계에 대하여 분석하였다. 특히 낮은 전도도를 가지는 실리콘 이종접합 태양전지의 emitter로 인해 투명산화전도막의 면저항성분에 관한 특성이 태양전지 특성에 가장 주도적인 영향을 미치는 것으로 나타났으며, 이는 직렬저항 성분에 대한 충진률 변화로 분석할 수 있었다.

  • PDF

A Method of Reducing a Tolerance of a Shunt Resistor for Balance of the Battery Cell to Improve a Precision of BMS (BMS 정밀도 향상을 위한 셀 밸런싱용 션트 고정저항의 허용오차 저감 방법)

  • Kim, Eun-Min;Son, Mi-Ra;Kang, Chang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1055-1061
    • /
    • 2018
  • Recently, due to the rapid development of electric vehicle and energy storage system, it is emphasized for battery management system to be needed and to be improved. BMS carries out various movement for optimization the use of the energy and safe use of secondary battery, these movement of BMS start at high wattage shunt fixed resistor which performs a function for detecting current among the BMS components. In addition, for the safe operation of secondary battery, the reliability of current voltage variation detected from shunt should be secured, and for corresponding characteristics, the quality of Temperature coefficient of resistance for BMS shunt and the quality of Thermo electromotive force all must be excellent. For these reasons, this study comes up with the stabilization plan for thermo electromotive force and temperature coefficient of resistance of BMS shunt resistor which is key to secondary battery operation.