• Title/Summary/Keyword: 저항 요소

Search Result 933, Processing Time 0.021 seconds

An Experimental Study on the Shallow Water Effect on Series 60 Hull Form (천수 영역에서의 Series 60 선형에 대한 실험적 고찰)

  • H.E. Kim;S.H. Seo;Y.G. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.21-26
    • /
    • 2000
  • For coastal service ships, the water depth is a very important parameter in the design stage of the hull form that has an influence on the restriction of the speed and draft of ships. In this study, the water depth is important for ship design. In this research, the change of total resistance, trim and sinkage due to the variation of water depth are measured by using on equipment for shallow water condition. For the basic research step about the shallow water effect, the effects on Series60($C_B=0.6$) hull form are experimented. To compare with existing experiment results, the test conditions are same with those. The water depth conditions are 10, 15, 20, 25% of LPP of the model ship, respectively.

  • PDF

Computation of Crack Tip Mode I Stress Intensity Factor of a Specimen for Measuring Slow Crack Growth Resistance of Plastic Pipes Using Finite-Element Method (유한요소법에 의한 플라스틱 파이프의 저속균열성장 저항성 시험편 균열선단 모드 I 응력확대계수 계산)

  • Choi, Sun-Woong;Park, Yeong-Joo;Suh, Yeong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1225-1234
    • /
    • 2005
  • Mode I stress intensity factor $(K_I)$ of Notched Ring Test(NRT) specimen for measuring slow crack growth resistance was found using finite-element method. The theoretical $K_I$ value of NRT was not available in any references and could not be solved analytically. At first, in order to verify the accuracy of the finite-element approach, published $K_I$ values of several cracks were calculated and compared with finite-element results. The results were in good agreement within inherent errors of theoretical $K_I$. Finally the mode I stress intensity factor of NRT was found using 2- and 3-dimensional finite-element methods and expressed as a function of the applied load. This enabled direct comparison of resistance to slow crack growth between NRT and Notched Pipe Test(NPT), which employ different loading regime.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Current Research Trends in Microbial Fuel Cell Based on Polymer Electrolyte Membranes (고분자 전해질 분리막 기반 미생물 연료전지의 최근 연구동향)

  • Choi, Tae-Hwan;Kim, Hyo-Won;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.173-184
    • /
    • 2010
  • Microbial fuel cell (MFC) is a promising renewable energy source that can generate electrical energy from organic wastes using microbe. This technology has been regarded as a future green alternative energy in that MFC makes use of organic-rich wastewater and also reduces waste sludges as well as produces electricity. To be practically realized, however, achieving higher power density than now is demanded, which may be possible by eliminating various negative factors to act as resistances in MFC operations. For instance, highly activated microbes, highly conductive electrode materials, and fast electron transfer between microbes and electrodes can lead to MFC with high power density. In particular, polymer electrolyte membranes are also a key component for improved MFC performance.

Evaluation of Diaphragm Effect for Hybrid Structural Systems Using Finite Element Method (유한요소법을 이용한 주상복합건물의 강막작용에 의한 영향 평가)

  • 김희철;최성우;홍원기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.19-32
    • /
    • 2003
  • The structural system of a hybrid building is composed of upper shear wall which resist lateral force by bending deformation and lower frame which resist lateral force by shear deformation. A deep transfer girder is used to transfer gravity load safely from super structures to structural frame beneath. Because of the vertical discontinuity, a building with transfer girder must be analyzed by dynamic analysis. However, this structural system has many problems in performing dynamic analysis that cannot be solved by general analysis procedure. The slabs In transfer floor are considered as either a Plate element or a rigid diaphragm in finite element analysis without appropriate evaluation of their characteristics. Therefore, a reasonable analysis method is proposed in this study by evaluating the diaphragm effect of a hybrid structure system.

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.

Design of Intelligent system with Fuzzy Logic for MR Sensor in destortion (Fuzzy Logic을 이용한 센서의 왜곡 현상의 지능형 추론 시스템 설계)

  • Kim, Young-Gu;Bak, Chang-Gui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1986-1991
    • /
    • 2007
  • In this paper, we discussed, intelligent soft filter for MR(magnetoresistive) sensor. Most navigation systems today use some type of compass to determine heading direction. Using the earth's magnetic field, electronic compass based on MR(magnetoresistive) sensors can electrically resolve better then 0.1 degree rotation. Intelligent methode for soft building a one degree compass using MR(magnetoresistive) sensors will also be discussed. Compensation techniques are shown to correct for compass tilt angels and nearby ferrous material disturbances. we proved the fuzzy logic that based on the way the ham deals with inexact information is useful for MR sensors.

Finite-element analysis of the shift in center of resistance of the maxillary dentition in relation to alveolar bone loss (치조골 상실에 따른 상악 치아군 저항중심의 변화에 관한 유한요소해석)

  • Sung, Sang-Jin;Kim, In-Tai;Kook, Yoon-Ah;Chun, Youn-Sic;Kim, Seong-Hun;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.278-288
    • /
    • 2009
  • Objective: The aim of this study was to investigate the changes in the center of resistance of the maxillary teeth in relation to alveolar bone loss. Methods: A finite element model, which included the upper dentition and periodontal ligament, was designed according to the amount of bone loss (0 mm, 2 mm, 4 mm). The teeth in each group were fixed with buccal and lingual arch wires and splint wires. Retraction and intrusion forces of 200 g for 4 and 6 anterior teeth groups and 400 g for the full dentition group were applied. Results: The centers of resistance were at 13.5 mm, 14.5 mm, 15 mm apical and 12 mm, 12 mm, 12.5 mm posterior in the 4 incisor group; 13.5 mm, 14.5 mm, 15 mm apical and 14 mm, 14 mm, 14.5 mm posterior in the 6 anterior teeth group; and 11 mm, 13 mm, 14.5 mm apical and 26.5 mm, 27 mm, 25.5 mm posterior in the full dentition group respectively according to 0 mm, 2 mm, 4 mm bone loss. Conclusions: The center of resistance shifted apically and posteriorly as alveolar bone loss increased in 4 and 6 anterior teeth groups. However, in the full dentition group, the center of resistance shifted apically and anteriorly in the 4 mm bone loss model.

Growth Characteristics and Grain Quality of Naked Barley Infected by Barley Yellow Mosaic Virus (보리호위위병(BaYMV)이병에 따른 쌀보리 품종의 생육특성 및 품질)

  • 이중호;김양길;서재환;박종철;최재성;김수동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.501-505
    • /
    • 2003
  • The growth characteristics and damage of naked barley infected with barley yellow mosaic virus (BaYMV) were investigated between resistant and susceptible varieties in habitual field plot of BaYMV BaYMV of the barley plants with typical disease symptom were identified by enzyme linked immunosorbent assay (ELISA) test. The visual degree (0-9) based on disease symptoms of BaYMV was different as 9 and 1 between susceptible variety Baegdong and resistant variety Naehanssalbori, respectively. Susceptible variety, Baegdong showed significant damage in culm length, number of kernel per spike and tiller per square meter but not in 1,000 kernel weight, so these results caused yield reduction to only 80% comparing to the control. Seed germination did not affected by BaYMV infection both in susceptible and resistant variety. In grain quality test, abortive grain yale and crude protein content were significantly increased compared to the control. The relationships between BaYMV infection and growth characteristics showed the negative correlations in culm length, number of tiller, 1000 kernel weight and yield, but it showed the positive correlation in crude protein contents. These results implied that BaYMV can affect not only barley growth and yield but grain quality.

Stress Analysis of PS Anchorage Zone Using Ultra High Performance Concrete (UHPC를 적용한 PS 정착부의 응력해석)

  • Kim, Jee Sang;Choi, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1349-1360
    • /
    • 2013
  • The post-tensioned anchorage zones of normal concrete have larger cross sections because of congested reinforcements to resist high bearing and bursting stresses. The high compressive and tensile strength of newly developed UHPC (Ultra High Performance Concrete) may reduce the cross sectional dimensions and simplify the reinforcement details, if used for post-tensioned members. The Finite Element Analysis was performed to evaluate the mechanical behavior of post-tensioned anchorage zones using UHPC without anchorage plates and confining reinforcements. The results show that the maximum bursting stresses are less than the values given in current design code without failure due to vertical cracks. The location of maximum bursting stresses were at 0.2 times of width of the models. The bursting force from FEA is less than that is obtained using simplified formular in Korean Bridge Design Code.