• Title/Summary/Keyword: 저항 시험

Search Result 2,143, Processing Time 0.026 seconds

Mechanical and Durability Properties of Partial-Depth Patch Materials using Polymer Materials for Concrete Pavement (단면보수용 콘크리트 패치재료의 역학적 특성 및 내구성 실험)

  • Yang, Sung-Chul;Hwang, In-Dong;Han, Seong-Hwan;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.23-32
    • /
    • 2009
  • In this paper an experimental program was launched to determine the mechanical and durability properties of spall repair materials (RCC: 3 items, PCC: 2 items, PC: 3 items). Test items were mechanical property tests such as setting times, strengths, modulus of elasticity, plastic shrinkage, and durability tests such as dynamic modulus ratio, bond property with freeze-thaw, water absorption, chemical resistance, ultraviolet exposure. Modulus of the PC products exhibits ductile while the modulus is in the order of RCC > PCC > PC. At early ages the PC products experience higher plastic shrinkage than others, henceforth stable at 28 days. Other test results such as dynamic modulus ratio, absorption, and chemical resistance show that the PCs are superior to the PCCs and the RCCs. Except for PC-2, all patch materials had bond strength more than 1.3MPa after freeze-thaw cycles of 200~300 while the PCs and the PCCs seem to be better than the RCCs. With 500 hours of ultraviolet exposure, all patch materials showed to have no crack or deterioration at the surface.

  • PDF

Development of Roughness-Model for Jointed Plain Concrete Pavements in Express Highway (고속도로 줄눈 콘크리트 포장의 평탄성 모델 개발)

  • Park, Young-Hoon;Chon, Beom-Jun;Kim, Young-Kyu;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Roughness is the most important factor to maintain the road performance, and affects greatly on the design life in Jointed Plain Concrete pavements. Also, the factors the evaluate pavement‘s commonality is the three method such as functionality, safety and structural performance. In evaluating function of road, representative factors is the roughness, which has been used to determine maintenance time as key standard. As research for roughness is absence in pavement design. Applied roughness-model had a low-reliability in Korea. Therefore, it is needed to develop reliable model in road roughness. In this research, uniform specific is applied to distribute them after selecting the concrete pavements. Concrete pavement is divided by sections of 238. Total length of this sections has 281km and account for 16% of total road length in korean concrete pavements for selected sections. Considering the korean roughness-model, the evaluation of roughness is performed for the freezing index, average annual rainfall, condition for the base, the amount of traffic as well as spalling(%), cracking(%), age(year) at the selected section at the selected section. Also, additional sections is selected to evaluate various age which affects on the roughness. As a result of the analysis, it showed that spalling(%), cracking(%), age(year), and the condition of the base affected road roughness. When the correlation with the road roughness was analyzed, the reliable model for road roughness was proposed, and the ratio that can explain road roughness was R2-68.8% and P value-0 which is statistically meaningful.

Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading (재하가열시험에 의한 무내화피복 콘크리트충전 각형강관기둥의 내화성능평가)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, experimental program and associated numerical study were carried out to evaluate the fire resistance of unprotected concrete-filled rectangular steel tubular (CFT) columns subjected to the standard fire. The key testing parameters included the length effect, the load ratio, and the sectional dimensions of the CFT columns. Temperature distribution and axial deformation of the CFT column specimens were measured and analyzed. Rather early local buckling of steel tubes was observed in all the specimens. This caused subsequent load transfer from steel tube to concrete, and eventually triggered concrete crushing, or complete loss of the load bearing capacity of the column. This implies that the limit state of local buckling as well as overall flexural buckling should be incorporated in fire design procedure. As expected, the fire resistance time of specimen with higher load ratio consistently lessened. The prediction of fire resistance time of unprotected CFT columns based on the limiting steel temperature in current design codes or the formula proposed by previous studies is slightly conservative compared to the fire test results available. To establish the finite element analysis model that can be used to predict the thermal and structural behaviour of unprotected CFT columns in fire, the fully coupled thermal-stress analysis was also tried by using the commercial code ABAQUS. The numerical results showed a reasonable global correlation with the experimental results.

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF

Study on the Displacement of Crib Wall System (Crib Wall System 변위해석에 관한 연구)

  • Kim, Doo-Jun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2002
  • Crib wall system is one of segmental crib type wall. Crib walls are constructed from separate members with no bonds between them other than frictional. The wall units are divide into two main types termed headers and stretchers. The headers run from the front to the back of the wall, perpendicular to the wall face. The cells are created by forming a grid by stacking individual wall components known as headers and stretchers. The body of wall consists of a system of open cell which are filled with a granular material. The design of crib retaining wall is usually based on conventional design methods derived from Rankine and Coulomb theory so that is able to resist the thrust of soil behind it, because it may be assumed that the wall acts as a rigid body. However, deformation characteristics of crib walls cannot be assumed as monolithic. They consist of individual members which have been stacked to creat a three dimensional grid. Therefore, the segmental grid allows relative movement between the individual member within the wall. The three dimensional flexible grid leads to stress distribution by interaction behavior between soil and crib wall. Therefore, in this study, in order to analysis the trends of deflection of crib wall system, new numerical models based on the results of Brandl's full scale test are introduced for design concept.

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

A Numerical Method for Nonlinear Wave-Making Phenomena (비선형 조파현상의 수치해법)

  • Jang-Whan Kim;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • A numerical method for nonlinear free-surface-wave problem is developed in this paper. The final goal of this study is to simulate the towing tank experiment of a ship model and to partially replace the experiment by the numerical model. The exact problem in the scope of potential flow theory is formulated by a variational principle based on the classical Hamilton's principle. A localized finite element method is used in the present numerical computations which made use of the following two notable steps. The first step is an efficient treatment of the numerical radiation condition by using the intermediate nonlinear-to-linear transition buffer subdomain between the fully nonlinear and linear subdomains. The second is the use of a modal analysis in the final stage of the solution procedures, which enables us to reduce the computation time drastically. With these improvements the present method can treat a much larger computational domain than that was possible previously. A pressure patch on the free surface was chosen as an example. From the present computed results we could investigate the effect of nonlinearity on the down-stream wave pattern more clearly than others, because much larger computational domain was treated. We found, specifically, the widening of the Kelvin angle and the increase of the wave numbers and the magnitude of wave profiles.

  • PDF

Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan (접지된 전기 송신원을 이용한 일본 북동부 만다이 산에서의 시간영역 항공 전자탐사)

  • Mogi, Toru;Kusunoki, Ken'ichirou;Kaieda, Hideshi;Ito, Hisatoshi;Jomori, Akira;Jomori, Nobuhide;Yuuki, Youichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Airborne electromagnetics (AEM) is a useful tool for investigating volcanic structures because it can survey large and inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. The Grounded Electrical Source Airborne Transient Electromagnetic(GREATEM)survey system was developed to increase the depth of investigation possible using AEM. The method was tested in a survey at Mount Bandai in north-eastern Japan. Mount Bandai is an andesitic stratovolcano that rises 1819m above sea level. An eruption in July 1888 left a hoof-shaped collapsed wall in its northern crater and avalanche debris at its base. Previous surveys of Mount Bandai allow for comparisons of data on its structure and collapse mechanism as obtained by GREATEM and other geophysical methods. The results show resistive structures in recent volcanic cones and conductive structures in the collapsed-crater area. Conductive areas around the collapsed wall correspond to an alteration zone resulting from hydrothermal activity, supporting the contention that a major cause of the collapse associated with the 1888 eruption was hydrothermal alteration that structurally weakened the interior of the volcanic edifice.

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.