• Title/Summary/Keyword: 저항 계수

Search Result 1,285, Processing Time 0.027 seconds

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

Field Pull-out Test and 3-D FEM Analysis for Steel Pipe Nailing Installed Foldable Wedge (접이식 웨지 장착 강관네일의 현장 인발시험 및 3차원 유한요소해석)

  • Kwon, Kyo-Keun;Choi, Bong-Hyuck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.313-319
    • /
    • 2009
  • In this study, field pull-out test and 3-D FEM analysis have been performed for examining and reflecting the behavior of steel pipe nailing installed foldable wedge. Field pull-out test was performed under various conditions. As a result, the steel pipe nailing installed foldable wedge has an effect of pull-out resistance increased about 30% in comparison with non-wedge type steel pipe nailing. Through back analysis in 3-D FEM for behavior of non-wedge type steel pipe nailing, friction characteristics between nail to soil was analyzed and obtained first consistent with field pull-out behavior. Then, the frictional characteristic was used for analyzing the behavior of the steel pipe nailing installed foldable wedge. The result was compared with the test results. Consequently, friction coefficient (${\mu}$) of about 1.2 between grout to soil leads to good agreement with analysis results and test results. And a limited pull-out resistance, $$T_L{\sim_=}32$$ tonf is similar to field pull-out test result which is improved about 33% in comparison with non-wedge type steel pipe nailing's $$T_L{\sim_=}24$$ tonf.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Proposal of Mobilized Passive Earth Pressure to Allowable Wall Displacement and Movement Types in Sandy Soil (벽체 허용변위와 양상을 고려한 사질토지반에서 수동측토압 제안)

  • Yoon, Young-Ho;Kim, Tae-Hyung;Kim, Tae-O;Woo, Min-seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.5-15
    • /
    • 2023
  • The evaluation of passive earth pressure plays a crucial role in the design of earth-retaining structures such as retaining walls and temporary earth-retaining walls to withstand horizontal earth pressure. In the earth pressure theory, active and passive earth pressures represent the earth pressures at the limit state, where the wall displacement reaches the maximum allowed displacement. In the design of earth-retaining structures, the passive earth pressure is considered as the resisting force. In this context, the limit displacement at which passive earth pressure occurs is significantly greater than that associated with the active earth pressure. Therefore, it is irrational to apply this displacement directly to the calculation of passive earth pressure. Instead, it is necessary to consider the mobilized passive earth pressure exerted at the allowable horizontal displacement to evaluate the structural stability. This study proposes an allowable wall displacement, denoted as 0.002 H (where H represents the excavation depth), based on a literature review that focuses on sandy soils. To calculate the mobilized passive earth pressure from the wall displacement, a semi-empirical equation is proposed. By analyzing the obtained data on mobilized passive earth pressure, a reduction factor applicable to Rankine's passive earth pressure is proposed for practical application in sandy soils under different wall movement types.

Evaluation on Laboratory Moisture Damage Characteristics of the Asphalt Mixtures using Indirect Tensile Test (간접인장시험을 이용한 아스팔트 혼합물의 실내 수분손상 특성 평가)

  • Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.243-248
    • /
    • 2008
  • Moisture damage of asphalt pavements can usually occur because of the loss of adhesion and cohesion between the asphalt binder and aggregate in the asphalt mixture due to presence of water. And this is one of the causes that is effect on the main distress of asphalt pavement. The objective of this study is to find out moisture damage characteristics of asphalt pavement. Effects of this study changes of the material properties and resistance characteristics of moisture damage on the asphalt mixtures under various temperatures and repeated immersion using indirect tensile test and modify Lottman test were evaluated during this study. The asphalt mixtures were produced using straight asphalt binder, SBS modified asphalt binder and aggregates. The material properties (resilient modulus, indirect tensile strength, failure energy and $DCSE_f$) of the asphalt mixtures were generally decreased with increasing to moisture damage caused by the number of repeated immersion. The decrease ratios of material properties by repeated immersion on SBS modified asphalt mixtures were lower than those of straight asphalt mixtures at all three test temperatures. As a conclusion, current criterion for evaluation moisture damage of asphalt mixtures is difficult for using distinction standard because of the limited evaluation criterion with one time immersion and single material property. Based on this research, to evaluate long term moisture damage on asphalt mixtures, material property tests of various kinds with repeated immersion test are considered.

A Study on Compact Section Requirements for Plate Girder Web Panels with Longitudinal Stiffeners (수평보강재가 설치된 플레이트거더 복부판의 조밀기준에 관한 연구)

  • Lee, Myung Soo;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.503-512
    • /
    • 2010
  • In AASHTO LRFD (2007), a compact section is defined as a section in which no premature failure caused by local buckling of web and flange plate or later buckling occurs before the section reaches the plastic moment, Mp. The current AASHTO LRFD (2007) provides the compact section requirement by limiting the web slenderness only for webs without longitudinal stiffeners. The role of longitudinal stiffener is to increase the web buckling strength caused flexure. Although a web does not satisfy the compactness requirement without longitudinal stiffeners, the web buckling can be prevented by use of valid longitudinal stiffeners. Therefore, the web may be able to reach the plastic moment. However, the reason why a longitudinal stiffener may not be used to satisfy compactness requirement is not cleary explained in AASHTO LRFD (2007). In this study, the buckling and ultimate strength behaviors of stiffened webs subjected to bending are investigated through the linear buckling and nonlinear finite element analysis. It is found that steel plate girders having webs that do not satisfy the compactness requirement are able to reach the plastic moment if the longitudinal stiffeners have sufficient rigidities and are properly located. From a nonlinear regression analysis of the results, a new compactness requirement is suggested for webs stiffened with one longitudinal stiffener.

The Quality Properties of Self Consolidating Concrete Using Lightweight Aggregate (경량골재를 사용한 자기충전 콘크리트의 품질 특성)

  • Kim, Yong Jic;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.573-580
    • /
    • 2010
  • This paper presents the development of self-consolidating concrete (SCC) using lightweight aggregates. SCC using Lightweight aggregate properties have been evaluated in terms of flowability, segregation resistance and filling capacity of fresh concrete as per the standards of the Japanese Society of Civil Engineering (JSCE). The measurement of the mechanical properties of hardened SCC using lightweight aggregate, including compressive strength, splitting tensile strength, elastic moduli and density, as well as its dry shrinkage and carbonation properties were also carried out. The characteristics of SCC using lightweight aggregate at the fresh state showed that as the use of the lightweight aggregate, the flowability improves without exception of Mix No. 9 but the segregation resistance tends to decrease without exception of Mix No. 3, 4 and 5. The 28 days compressive strength of the SCC using lightweight aggregate was found to be 30 MPa or higher. The relationship between the compressive strength and the splitting tensile strength was found to be similar to the expression presented by CEB-FIP, and the relationship between the compressive strength and the elastic moduli was found to be similar to the expression suggested by ACI 318-08 which takes into consideration the density of concrete. The density of the SCC using lightweight aggregate decreased by up to 26% compared to that of the control SCC. Also, The dry shrinkage and carbonation depth of the SCC using lightweight aggregate increased compared to that of the control SCC.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications (복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구)

  • Younghee So;Eunseo Lee;Jinyoung Lee;Sungwook Mhin;Bin Lee;Hyung Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.73-77
    • /
    • 2024
  • The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 1. Stability of Amor Blocks (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 1 피복 블록의 안정성)

  • Kim Seung-Woo;Suh Kyung-Duck;Oh Young Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.188-201
    • /
    • 2005
  • This is the first part of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. This paper, Part 1, is restricted to stability of armor blocks, while Part 2 deals with sliding of caissons. Reliability design methods have been developed fur breakwater designs since the mid-1980s. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed. In the Level 1 method, partial safety factors are used, which are predetermined depending on the allowable probability of failure. In the Level 2 method, the probability of failure is evaluated with the reliability index, which is calculated using the means and standard deviations of the load and resistance. The load and resistance are assumed to distribute normally. In the Level 3 method, the cumulative quantity of failure (e.g. cumulative damage of armor blocks) during the lifetime of the breakwater is calculated without assumptions of normal distribution of load and resistance. Each method calculates different design parameters, but they can be expressed in terms of probability of failure so that tile difference can be compared among the different methods. In this study, we applied the reliability design methods to the stability of armor blocks of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the target probability of failure while that for the reinforced breakwater is much lower than the target value, indicating that the breakwaters before damage and after reinforcement were under- and over-designed, respectively. On the other hand, the results of the different reliability design methods were in fairly good agreement, confirming that there is not much difference among different methods.