• Title/Summary/Keyword: 저지연

Search Result 124, Processing Time 0.027 seconds

A Study on RTP-based Lip Synchronization Control for Very Low Delay in Video Communication (초저지연 비디오 통신을 위한 RTP 기반 립싱크 제어 기술에 관한 연구)

  • Kim, Byoung-Yong;Lee, Dong-Jin;Kwon, Jae-Cheol;Sim, Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.1039-1051
    • /
    • 2007
  • In this paper, a new lip synchronization control method is proposed to achieve very low delay in the video communication. The lip control is so much vital in video communication as delay reduction. In a general way, to control the lip synchronization, both the playtime and capture time calculated from RTP time stamp are used. RTP timestamp is created by stream sender and sent to the receiver along the stream. It is extracted from the received packet by stream receiver to calculate playtime and capture time. In this paper, we propose the method of searching most adjacent corresponding frame of the audio signal, which is assumed to be played with uniform speed. Encoding buffer of stream sender is removed to reduce the buffering delay. Besides, decoder buffer of receiver, which is used to correct the cracked packet, is resulted to process only 3 frames. These mechanisms enable us to achieve ultra low delay less than 100 ms, which is essential to video communication. Through simulations, the proposed method shows below the 100 ms delay and controlled the lip synchronization between audio and video.

  • PDF

A Study on the High Quality 360 VR Tiled Video Edge Streaming (방송 케이블 망 기반 고품질 360 VR 분할 영상 엣지 스트리밍에 관한 연구)

  • Kim, Hyun-Wook;Yang, Jin-Wook;Yoon, Sang-Pil;Jang, Jun-Hwan;Park, Woo-Chool
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.43-52
    • /
    • 2019
  • 360 Virtual Reality(VR) service is getting attention in the domestic streaming market as 5G era is upcoming. However, existing IPTV-based 360 VR video services use upto 4K 360 VR video which is not enough to satisfy customers. It is generally required that over 8K resolution is necessary to meet users' satisfaction level. The bit rate of 8K resolution video exceeds the bandwidth of single QAM channel(38.817mbps), which means that it is impossible to provide 8K resolution video via the IPTV broadcast network environment. Therefore, we suggest and implement the edge streaming system for low-latency streaming to the display devices in the local network. We conducted experiments and confirmed that 360 VR streaming with a viewport switching delay less than 500ms can be achieved while using less than 100mbps of the network bandwidth.

Quantization Method in Spatial Domain for Screen Content Video Compression (스크린 콘텐츠 영상 압축을 위한 화소 영역 양자화 방법)

  • Nam, Jung-Hak;You, Jong-Hun;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.67-76
    • /
    • 2012
  • Expanding services and productions for screen content videos recently, necessity of new compression techniques is emerging. The next-generation video coding standard is also considering specified coding tools for screen content videos, but it is still preliminary stage. In this paper, we investigate the characteristics of screen content videos for which we propose the quantization in spatial domain to improve coding efficiency. The proposed method directly employs quantization for residual signal without any transformations. The proposed method also applies adaptive coefficients prediction and in-loop filter for quantized residual signals in spatial domain based on the characteristics of screen content videos. As a results, the proposed method for the random access, the low-delay and the all-intra modes achieve bit-saving about 4.4%, 5.1%. and 4.9%, respectively.

Hardware Design and Implementation of Joint Viterbi Detection and Decoding Algorithm for Bluetooth Low Energy Systems (블루투스 저전력 시스템을 위한 저복잡도 결합 비터비 검출 및 복호 알고리즘의 하드웨어 설계 및 구현)

  • Park, Chul-hyun;Jung, Yongchul;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.838-844
    • /
    • 2020
  • In this paper, we propose an efficient Viterbi processor using Joint Viterbi detection and decoding (JVDD) algorithm for a for bluetooth low energy (BLE) system. Since the convolutional coded Gaussian minimum-shift keying (GMSK) signal is specified in the BLE 5.0 standard, two Viterbi processors are needed for detection and decoding. However, the proposed JVDD scheme uses only one Viterbi processor by modifying the branch metric with inter-symbol interference information from GMSK modulation; therefore, the hardware complexity can be significantly reduced without performance degradation. Low-latency and low-complexity hardware architecture for the proposed JVDD algorithm was proposed, which makes Viterbi decoding completed within one clock cycle. Viterbi Processor RTL synthesis results on a GF55nm process show that the gate count is 12K and the memory unit and the initial latency is reduced by 33% compared to the modified state exchange (MSE).

Low-Latency Programmable Look-Up Table Routing Engine for Parallel Computers (병렬 컴퓨터를 위한 저지연 프로그램형 조견표 경로지정 엔진)

  • Chang, Nae-Hyuck
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.244-253
    • /
    • 2000
  • Since no single routing-switching combination performs the best under various different types of applications, a flexible network is required to support a range of polices. This paper introduces an implementation of a look-up table routing engine offering flexible routing and switching polices without performance degradation unlike those based on microprocessors. By deciding contents of look-up tables, the engine can implement wormhole routing, virtual cut-through routing, and packet switching, as well as hybrid switching, under a variety of routing algorithms. Since the routing engine has a piplelined look-up table architecture, the routing delay is as small as one flit, and thus it can overlap multiple routing actions without performance degradation in comparison with hardwired routers dedicated to a specific policy. Because four pipeline stages do not induce a hazard, expensive forwarding logic is not required. The routing engine can accommodate four physical links with a time shared cut-through bus or single link with a cross-bar switch. It is implemented using Xilinx 4000 series FPGA.

  • PDF

A Hierarchical Round-Robin Algorithm for Rate-Dependent Low Latency Bounds in Fixed-Sized Packet Networks (고정크기 패킷 네트워크 환경에서 할당율에 비례한 저지연 한계를 제공하는 계층적 라운드-로빈 알고리즘)

  • Pyun Kihyun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.254-260
    • /
    • 2005
  • In the guaranteed service, a real-time scheduling algorithm must achieve both high level of network utilization and scalable implementation. Here, network utilization indicates the number of admitted real-time sessions. Unfortunately, existing scheduling algorithms either are lack of scalable implementation or can achieve low network utilization. For example, scheduling algorithms based on time-stamps have the problem of O(log N) scheduling complexity where N is the number of sessions. On the contrary, round-robin algorithms require O(1) complexity. but can achieve just a low level of network utilization. In this paper, we propose a scheduling algorithm that can achieve high network utilization without losing scalability. The proposed algorithm is a Hierarchical Round-Robin (H-RR) algorithm that utilizes multiple rounds with different interval sizes. It provides latency bounds similar to those by Packet-by-Packet Generalized Processor Sharing (PGPS) algorithm using a sorted-Priority queue. However, H-RR requires a constant time for implementation.

Low Latency Uplink Transmission Scheme in Mobile Communication Networks (이동통신망에서 저지연 상향링크 전송 기법)

  • Bae, Duck-Hyun;Lee, Hyun-Suk;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.77-87
    • /
    • 2017
  • Even though current LTE/LTE-A mobile networks provide enough high data rate and low latency to support conventional wireless services, to support ultra-low delay services, such as virtual reality and remote control, in the next generation mobile communication network, it is required to provide very low delay about several ms. However, in the uplink transmission of the LTE/LTE-A system, the process of scheduling grant is required to obtain uplink resources for uplink transmission from the eNB. The process of granting uplink resources from eNB brings additional fixed latency, which is one of the critical obstacles to achieve low delay in uplink transmissions. Thus, in this paper, we propose a novel uplink transmission scheme called Cut-in uplink transmission, to reduce uplink latency. We provide the performance of the proposed uplink transmission scheme through simulations and show the proposed uplink transmission scheme provides lower uplink transmission delay than conventional uplink transmission scheme in LTE/LTE-A mobile networks.

PAPR Reduction Scheme Using Selective Mapping in GFDM (선택사상기법을 이용한 GFDM의 최대전력 대 평균전력 비 감소기법)

  • Oh, Hyunmyung;Yang, Hyun Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.698-706
    • /
    • 2016
  • Orthogonal frequency division multiplexing (OFDM) has high peak to power ratio (PAPR). High PAPR makes problems such as signal distortion and circuit cost increasing. To solve the problemsm several PAPR reduction methods have been proposed. However, synchronization and orthogonality in OFDM systems may be a limitation to reduce latency for 5G networks. Generalized frequency division multiplexing (GFDM) is one of the possible solutions for asynchronous and non-orthogonal systems, which are more preferable to reduce the latency. However, multiple subsymbols in GFDM result in more superposition in time domain, GFDM has higher PAPR. Selective mapping (SLM) is one of PAPR reduction techniques in OFDM, which uses phase shift. The PAPR of GFDM SLM is compared to conventional GFDM and OFDM SLM in terms of PAPR reduction enhancement via numerical simulations. In addition, the out-of-band performance is analyzed in the aspect of asynchronous condition interference.

A Entropy Coding Method using Temporal and Spatial Correlation on HEVC (HEVC에서 시공간적 상관관계를 이용한 엔트로피 부호화 방법)

  • Kim, Tae-Ryong;Kim, Kyung-Yong;Lee, Han-Soo;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.191-194
    • /
    • 2012
  • The split flag and the skip flag in CU syntax have high correlation on spatial domain as well as temporal domain. This paper suggests a method for enhancing coding efficiency by using not only spatial correlation but also temporal correlation when coding CU information. In the CABAC case, temporal collocated CU information is used for selecting context model of the split flag and the skip flag. In the CAVLC case, current CU information is estimated from temporal collocated CU information then encoded. As a result, a coding efficiency was increased by 0.1%~0.6% in CABAC, 0.1%~0.4% in CAVLC compared with HM 3.0. This method shows better performance on lowdelay condition which uses reference frame close to current frame.

An Enhanced Control Protocol Design for LADN in 5G Wireless Networks

  • Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.109-117
    • /
    • 2020
  • In this paper, we analyze LADN(Local Area Data Network) that provides high throughput, low latency and service localization for 5G wireless networks and propose an enhanced control protocol design for LADN in 5G wireless networks. The concept of LADN is newly introduced in 3GPP 5G communication system and the LADN is a data network to which the UE(User Equipment) can connect with a specific LADN session only when the UE is located in a certain service area. If the LADN information between the UE and core network is not identical, the LADN session cannot be properly established. The proposed approach promplty synchronizes the LADN information between the UE and core network by using the specific registration procedure and appropriately establishes the LADN session, when the establishment of the LADN session is failed. Consequently, the proposed enhanced control protocol design(ECP) can prevent unnecessary signalling overhead and communication delay for LADN in 5G wireless networks.