• Title/Summary/Keyword: 저잡음

Search Result 740, Processing Time 0.027 seconds

A Study on the Fabrication of the Low Noise Amplifier Using Resistive Decoupling circuit and Series feedback Method (저항결합 회로와 직렬 피드백 기법을 이용한 저잡음 증폭기의 구현에 관한 연구)

  • 유치환;전중성;황재현;김하근;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.190-195
    • /
    • 2000
  • This paper presents the fabrication of the LNA which is operating at 2.13∼2.16 GHz for IMT-2000 lot-end receiver using series feedback and resistive decoupling circuit. Series feedback added to the source lead of a transistor keep the low noise characteristics and drop the input reflection coefficient of amplifier simultaneously. Also, it increases the stability of the LNA. Resistive decoupling circuit is suitable for input stage matching because a signal at low frequency is dissipated by a resistor in the matching network The amplifier consist of GaAs FET ATF-10136 for low noise stage and VNA-25 which is internally matched MMIC for high gain stage. The amplifier is fabricated with both the RF circuits and self bias circuit on the Teflon substrate with 3.5 permittivity. The measured results of the LNA which is fabricated using above design technique are presented more than 30 dB in gain P$\_$ldB/ 17 dB and less than 0.7 dB in noise figure, 1.5 in input$.$output SWR(Standing Wave Ratio).

  • PDF

Robustness Evaluation of GaN Low-Noise Amplifier in Ka-band (Ka-대역 GaN 저잡음 증폭기의 강건성 평가)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Kim, Younghoon;Lee, Sanghun;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.149-154
    • /
    • 2022
  • Due to high power capabilities and high linearity of GaN devices, GaN Low-Noise Amplifiers (LNAs) without a limiter can be implemented in order to improve noise figure and reduce chip area in radar receivers. In this paper, a GaN LNA is presented for Ka-band radar receivers. The designed LNA was realized in a 150-nm GaN HEMT process and measurement results show that the voltage gain of >23 dB and the noise figure of <6.5 dB including packaging loss in the target frequency range. Under the high-power stress test, measured gain and noise figure of the GaN LNA is degraded after the first stress test, but no more degradation is observed under multiple stress tests. Through post-stress noise and s-parameter measurements, we verified that the GaN LNA is resilient to pulsed input power of ~40 dBm.

Implementation of Ka-band Low Noise Block Converter For Satellite TVRO (Ka-band 위성방송수신용 저잡음 블록 변환기 구현)

  • Lim, Jin-Won;Kim, Tae-Jin;Park, Ju-Nam;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • In this paper, Low Noise Block down converter(LNB) is designed for a Ka-band satellite television receiver only(TVRO) using commercially available MMIC. Designed Low Noise Block down-converter is composed of three stage amplifiers involving input noise matched at first amplification stage, image reject band pass filter, frequency mixer and intermediate frequency amplification. Through LNB Module power budget to obtain gain and attenuation, Optimum LNB devices satisfying Ka-band LNB technical specification are selected. Experimental results of designed Ka-band LNB yields conversion gain of over $58{\pm}1dB$, noise figure of less than 1.5dB and phase noise of -94.6dBc @10KHz.

  • PDF

Design and Implementation of Low Noise Amplifier for GPS Reciver (GPS수신기용 저잡음 증폭기의 설계 및 구현)

  • 박지언;박재운;변건식
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • This papers describes two low-noise amplifiers that use the Hewlett-Packard ATF-10236 low noise GaAs FET device, The actual measured performance of the amplifiers compares favorably to that predicted by the computer simulation(ADS) the noise figure of the 1575MHz amplifier was measured at 1.78dB which is lower that 2dB as specified. Measurement gam measured 33.0075dB which is within 35dB$\pm$0.5㏈ of the GPS specification. Network Analyzer(HP8510) is used to measure all the s-parameters and Noise Figure meter(HP8970B) is used to measure noise figure. As the result of experiment, gain, input VSWR, output VSWR is within the GPS specification sufficiently.

  • PDF

MMIC Low Noise Amplifier Design for Millimeter-wave Application (밀리미터파 응용을 위한 MMIC 저잡음 증폭기 설계)

  • 장병준;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1191-1198
    • /
    • 2001
  • MMIC low noise amplifiers for millimeter-wave application using 0.15 $\mu$m pHEMT have been presented in this paper. The design emphasis is on active device model and EM simulation. The deficiency of conventional device models is identified. A distributed device model has been adapted to circumvent the scaling problems and, thus, to predict small signal and noise parameters accurately. Two single-ended low noise amplifier are designed using distributed active device model for Q-band(40 ∼ 44 GHz) and V-band(58 ∼65 GHz) application. The Q-band amplifier achieved a average noise figure of 2.2 dB with 18.3 dB average gain. The V-band amplifier achieved a average noise figure of 2.9 dB with 14.7 dB average gain. The design technique and model employed provides good agreement between measured and predicted results. Compared with the published data, this work also represents state-of-the-art performance in terms of gain and noise figure.

  • PDF

Design of The Two-Stage Low Noise Amplifier for IMT-2000 Base Stations (IMT-2000 기지국용 저잡음 증폭기 설계)

  • 배영수;최재훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.252-256
    • /
    • 2001
  • 본 논문에서는 IMT-2000 기지국용 2단 저잡음 증폭기를 설계했다. 잡음지수 특성이 뛰어난 HP사의 PHEMT 소자인 ATF-35143을 사용하였고 능동소자의 바이어스는 $V_{ds}$ 가 3 v $I_{d}$을 30mA로 설정했다. 첫 단은 최소잡음 지수에 중점을 두고 설계했고 둘째 단은 이득에 초점을 맞추어 설계했다. 입출력 정재파 비를 줄이기 위해서 전체증폭기의 앞단과 뒷단에 삽입손실이 0.2dB인 X503 SMT 90도 하이브리드 커플러를 설치 했다. 제작을 위해 기판은 두께 0.76mm이고 비유전율 4.2의 FR-4를 사용했다. 설계된 저잡음 증폭기의 특성은 주파수대역 1.92GHz~1.98GHz에서 잡음지수 0.45dB, 입출력 정재파 비 1.2이하, 이득은 32dB이상의 특성을 보였다.

  • PDF

Design of 900MHz Low Noise Amplifier (900MHz대 저전력 저잡음 증폭기 설계)

  • 김영호;정항근
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.671-674
    • /
    • 1998
  • 본 논문에서는 최근 급격히 수요가 증대하고 있는 휴대용 단말기의 수신기 선단에 사용되는 저잡음 증폭기(LNA)를 0.6㎛ CMOS공정 파라미터를 사용하여 설계하였다. 설계된 LNA는 전원 전압 ±1.2v, 900㎒대에서 동작하는 전류 재사용방식의 적층 CMOS구조로서 시뮬레이션 결과 전력소모가 9.45㎽, 전력이득은 23.7dB, 선형지수 OIP3는 7.6dBm을 나타내어 저전력 저잡음 특성을 얻었다. 사용된 인덕터의 Q는 3.5이다.

  • PDF

Low-Power 24-GHz CMOS Low Noise Amplifier (저 전력 24-GHz CMOS 저 잡음 증폭기)

  • Sung, Myeong-U;Chandrasekar, Pushpa;Rastegar, Habib;Choi, Geun-Ho;Kim, Shin-Gon;Kurbanov, Murod;Heo, Seong-Jin;Kil, Keun-Pil;Siddique, Abrar;Ryu, Jee-Youl;Noh, Seok-Ho;Yoon, Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.647-648
    • /
    • 2016
  • 본 논문에서는 차량용 레이더를 위한 저 전력 24GHz CMOS 저 잡음 증폭기를 제안한다. 이러한 회로는 1.8볼트 전원에서 동작하며, 저 전력에서도 높은 전압 이득과 낮은 잡음지수를 가지도록 설계되어 있다. 제안한 회로는 TSMC $0.13{\mu}m$ 고주파 CMOS 공정으로 구현되어 있다. 제안한 회로는 최근 발표된 연구결과에 비해 저 전력동작에서 높은 전압이득 및 낮은 잡음지수 특성을 보였다.

  • PDF

A MedRadio-Band Low Power Low Noise Amplifier for Medical Devices (의료기기용 MedRadio 대역 저전력 저잡음 증폭기)

  • Kim, Taejong;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.62-66
    • /
    • 2016
  • This paper presents a MedRadio-band low power low noise amplifier for Medical Devices. A proposed MedRadio-band low power low noise amplifier adopts a current-reuse resistive feedback topology to increase overall gm and reduce power consumption. The gain of the LNA increases by the Q-factor of the additional series RLC input matching network, and its noise figure is minimized by the similar factor. Furthermore, it consumes low power because of low supply voltage and current reuse technique. By exploiting the $g_m$-booting and matching network property, the proposed MedRadio-band low noise amplifier achieves a noise figure of 0.85 dB, a voltage gain of 30 dB, and IIP3 of -7.9 dBm while consuming 0.18 mA from a 1 V supply voltage in $0.13{\mu}m$ CMOS technology.

A 3 Stage MMIC Low Noise Amplifier for the Ka Band Satellite Communications and BWLL System (Ka 대역 위성통신 및 BWLL 시스템용 3단 MMIC 저잡음 증폭기 설계 및 제작)

  • 염인복;정진철;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 2001
  • A Ka Band 3-stage MMIC (Monolithic Microwave Integrated Circuits) LNA (Low Noise Amplifiers) has been designed and fabricated far the Ka band satellite communications and BWLL(Broad Band Wireless Local Loop)system. The MMIC LNA consists of two single-ended type amplification stages and one balanced type amplification stage to satisfy noise figure, high gain and amplitude linearity. The 0.15${\mu}{\textrm}{m}$ pHEMT has been used to provide a ultra low noise figure and high gain amplification. Series and Shunt feedback circuits and λ/4 short lines were inserted to ensure high stability over the frequency range form DC to 80 GHz. The size of the MMIC LNA is 3.1mm$\times$2.4mm(7.44mm$^2$). The on wafer measured performance of the MMIC LNA, which agreed with the designed performance, showed the noise figure of less than 2.0 dB, and the gain of more than 26 dB, over frequency ranges from 22 GHz to 30 GHz.

  • PDF