• Title/Summary/Keyword: 저속 회전축

Search Result 23, Processing Time 0.023 seconds

Horizontal-Axis Wind Turbine System Modeling using Multi-body Dynamics (다몸체 역학을 이용한 수평축 풍력발전 시스템 모델링)

  • 민병문;노태수;송승호;최석우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this paper, an efficient modeling method of Horizontal-Axis Wind Turbine(HAWT) system is proposed. This method Is based on representing a HAWT system as a multi-body system with several rigid bodies i.e. rotor blade, low/high speed shaft, gear system, md generator. Also, simulation software WINSIM is developed to evaluate performance of wind turbine system. Simulation results show that the proposed modeling method and simulation software are efficient and reliable.

Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow (균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교)

  • Kim, Jin;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

A Study on ADS-33E with Application to the Assessment of Handling Quality for Unmanned Rotorcraft (회전익 무인항공기의 비행안정성 규명을 위한ADS-33E 적용기법 연구)

  • Jeong, Hwan-Ho;Suk, Jin-Young;Kim, Byoung-Su;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.243-250
    • /
    • 2012
  • In this paper, a systematic consequence of evaluation method, procedure, and flight data analysis is investigated for application of ADS-33E-PRF to UAV. And it is applied to unmanned rotorcraft for evaluation. CNUHELI-020, which is developed in Chungnam National University, is used for assessment of handling quality: decoupled longitudinal and lateral/directional model were used to assess handling qualities. Evaluation flight maneuvers are categorized as hover/low-speed requirements, small-amplitude attitude change, and moderate-amplitude attitude change requirements.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

Dual-rotor Wind Turbine Generator System Modeling and Simulation (이중 로터 풍력발전 시스템 모델링 및 시뮬레이션에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Min, Byoung-Mun;Lee, Hyun-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.87-95
    • /
    • 2004
  • In this paper, an efficient method for modeling a dual-rotor type wind turbine generator system and simulation results are presented. The wind turbine is treated as a collection of several rigid bodies, each of which represents, respectively, main and auxiliary rotor blades, high/low speed shafts, generator, and gear system. Simulation software WINSIM is developed to implement the proposed modeling method and is used to investigate the transient and steady-state performance of the wind turbine system.

Abnormal Vibration of the Steam Turbine Shaft in 500 MW Class Coal-fired Power Plants (500 MW급 석탄화력발전소 증기터빈축 이상진동의 해결방안)

  • Ahn, Kwang-Min;Yoo, HoSeon
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • During the start-up of 500 MW class coal-fired power plant, abnormal shaft vibration was occurred on bearings installed on both side of high and intermediate pressure steam turbine. Shaft vibration was analyzed to investigate the reason and find the resolution, based on well-known theory in this study. Typical vibration characteristics which occur when rotating parts contact with stationary parts were observed at the analysis of frequency, amplitude and phase angle. The reason of abnormal vibration was assumed to be rub and internal parts wear was observed during repair period. As a result of applying low speed turning and balancing for resolution of abnormal vibration, balancing was more effective for rub removal. So balancing could be excellent resolution in the case of abnormal vibration which is similar to this study.

  • PDF

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

Comparative Study of Performance of Switching Control and Synchronous Notch Filter Control for Active Magnetic Bearings (능동 자기 베어링을 위한 동기 노치필터 제어기와 스위칭 제어기의 성능 비교 연구)

  • Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.511-519
    • /
    • 2013
  • Switching controllers for active magnetic bearings are claimed to minimize the copper losses because they do not use bias currents. In this study, we compare the performances of the switching controller with those of the widely used proportional-derivative (PD) controller. The PD controller is combined with a synchronous notch filter to reduce the effect of the unbalance disturbance. For a fair and objective comparison, the PD controller is designed systematically. The switching controller is designed so that the dynamics of the two controllers are almost identical. A system model is developed. This model includes the flexible modes of the rotor and the dynamics of the sensors and amplifiers. The simulation results show that the switching controller indeed reduces the copper loss at lower speeds. However, it fails to operate around the speed close to the bending mode of the rotor.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.

Effect of Gravity Perturbation on the Axis Specification in the Egg of Xenopus laevis (중력 작용의 변경 효과가 무미양서류 Xenopus laevis 수정란의 축형성에 미치는 영향)

  • 정해문;한평림
    • The Korean Journal of Zoology
    • /
    • v.27 no.3
    • /
    • pp.127-136
    • /
    • 1984
  • The specification of dorsal/ventral axis in the egg of Xenopus laevis was investigated as a series of oblique orientation to gravity by tilt and clinostat. The results are as follows. (1) If the eggs were oriented, in the early period after fertilization, to novel gravity by $15^\\circ, 30^\\circ, 45^\\circ$ and $60^\\circ$ tilt until gastrula stage, the site of involution was usually formed in the OpG side (the side opposing gravity). As the degree of tilt was raised from $15^\\circ to 60^\\circ$, the rate of relocation of the involution site was proportionally increased. (2) When UV-irradiated eggs were tilted period to first cleavage by $15^\\circ, 30^\\circ, 45^\\circ$ and $6\^\\circ$, the effect of UV syndrome was rescued, and the extent of rescue was propotional to the tilt degree. (3) The fertile eggs were loaded on the clinostats of several speeds. In the range of low speeds between $0.45 \\sim 9.0$ rph, the location of dorsal lip was dependent on the direction of rotation, and in $40 \\sim 360$ rph, lip was formed at a random position. In addition, some of the tadpoles experienced with clinostat showed the typical syndrome of "dorsal axis reduction". The above results were discussed regarding the mechanism of the establishment of dorsal/ventral palarity. palarity.

  • PDF