• Title/Summary/Keyword: 저속충돌

Search Result 64, Processing Time 0.034 seconds

Effect of Bead Shape in Aluminum Crash Box for Effective Impact Energy Absorption Under Low- Velocity Impact Condition (저속충돌조건에서 효과적인 충돌에너지흡수를 위한 알루미늄 크래쉬 박스의 비드형상 효과)

  • Lee, Chan-Joo;Lee, Seon-Bong;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1155-1162
    • /
    • 2012
  • The purpose of this study is to investigate the effects of the bead shape on the crash performance of an aluminum crash box under a low-velocity impact condition. The initial peak load and impact energy absorption of a crash box with three types of bead shapes-edge concave, surface convex, and surface concave type-were studied through an FE analysis and an experiment. In addition, the effects of the bead shapes on the crash performance of the crash box were verified through a low-velocity-impact test with a front side member assembled with an aluminum crash box. The initial peak load of the surface-concave-type crash box was reduced by the bead, and therefore, deformation of the front side member at initial contact could be prevented. Furthermore, there was no deformation of the front side member after the impact test because the crash box with a surface-concave-type bead absorbed all the impact energy.

Group Node Contention Algorithm for Avoiding Continuous Collisions in LR-WPAN (무선 저속 PAN에서 연속된 충돌 회피를 위한 그룹 노드 경쟁 알고리즘)

  • Lee, Ju-Hyun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1066-1074
    • /
    • 2008
  • In this paper, we proposed an efficient algorithm using pulse signal based on group-node-contention in LR-WPAN. The purpose of IEEE 802.15.4 is low speed, low cost and low power consumption. Recently, as applications of LR-WPAN have been extended, there is a strong probability of collision as well and almost collision occurs because of hidden node problem. Moreover, if the collision continuously occurs due to hidden node collision, network performance could be decreased. Nowadays, although several papers focus on the hidden node collision, algorithms waste the channel resource if continuous collisions frequently occur. In this paper, we assume that PAN has been already formed groups, and by using pulse signal, coordinator allocates channel and orders, and then, nodes in the allocated group can compete each other. Hence, contention nodes are reduced significantly, channel wastage caused by collision is decreased, and data transmission rate is improving. Finally, this algorithm can protect the network from disruption caused by frequent collisions. Simulation shows that this algorithm can improve the performance.

An Adaptive Back-off Algorithm in Beacon-Enabled LR-WPAN (비콘 기반 저속 WPAN에서의 적응적 백오프 알고리즘)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.735-742
    • /
    • 2016
  • The Low-Rate WPAN is a short range wireless networking technology characterized by low-rate, low-power, low complexity and low-cost. The LR-WPAN controls wireless channel access among network devices based on the contention-based CSMA/CA algorithm. Therefore, frame collisions may take place at any time, leading to the severe degradation of network performance. This paper proposes a new algorithm that changes back-off periods adaptively in the CSMA/CA process depending on network conditions, resulting in the reduction of frame collisions. Throughout extensive simulations, it turns out that varying the back-off periods dynamically shows better performance than maintaining the fixed back-off periods.

A Study on the Improvement of a Damageability and Repairability by Improving Mounting Structure of a Bumper for Passenger Cars (범퍼체결구조 개선을 통한 손상성.수리성 향상방안에 관한 연구)

  • Kim, Ji-Won;Park, In-Song;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • The purpose of this study is to analyze the bumper mounting structure of passenger vehicles at low speed collision. In order to improve the repairability and damageability of the vehicle, the low speed crash tests of RCAR(Research Council for Automobile Repairs) standard(front & rear 15km/h 40% offset crash test) were carried out for analysis of 3 different types of bumper mounting structures. The results of experiments show that the impact energy absorbing ability of bumper stay with rectangular crash box type vehicle which is inserted into the bumper rail was superior to another two different bumper mounting structures that are applied to many passenger vehicles. In this thesis, well designed bumper mounting structure such as rectangular crash box type can enhance the safety of occupants as well as contribute to reduce repair cost at low collision accident by improving repairability and damageability of vehicle.

A Stucy on the Whiplash Injury due to the Low Speed Rear-end Collision (저속 후면 충돌로 인한 편타성 상해에 관한 연구)

  • 최형연;윤석배;김희성
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.321-330
    • /
    • 1997
  • 교통사고로 인하여 정형외과를 찾는 환자 중 60%정도가 경추부 상해 때문이나 이에 대한 보호장구개발은 미흡한 실정에 있다. 자동차 충돌사고시의 경추부 상해는 대 부분이 후면 충돌로부터 기인하며 특히 차체의 변형이 적은 저속충돌시에도 경추부의 연질 조직이 상하는 편차성 상해가 쉽게 발생된다. 본 논문에서는 이러한 편타성 상 해를 보다 근본적으로 분석하기 위하여 활차 실험과 그에 대한 컴퓨터 시뮬레이션 결 과를 소개하였다. 현재 진행 중인 본 연구를 통하여 아직까지 규명되지 않은 경추부 의 하중 경로와 상해기구를 파악하고자 하며 이를 바탕으로 보다 인체공학적인 시트 설계에 필요한 기반 기술을 확보하고자 한다.

  • PDF

구조용 FRP부재의 적층구성이 흡수에너지특성에 미치는 영향

  • 최효석;김영남;양인영
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.25-30
    • /
    • 1999
  • 자동차의 정면 충돌시 발생하는 충돌에너지를 흡수하여 인명을 보호하기 위한 장비중 구조 역학적 관점에서 고려될 수 있는 것으로 범퍼와 사이드멤버(Side Member)가 있다. 이들중 범퍼는 시속 8km/hr 이하의 저속 충돌시에 탄성 변형에너지로서 충돌에너지를 흡수하는 역할을 하나, 그 이상의 고속 정면 충돌시에는 일반적으로 사이드멤버가 충돌에너지의 60∼70%를 부재의 연속적인 대변형에 의한 소성에너지에 의해 흡수하고 있다. (중략)

  • PDF

Occupant Neck Injury Assessment Caused by Backward Movement of a Preceding Vehicle at a Low Impact Velocity (선행 차량의 후진에 의한 저속 충돌 시 탑승자 경추 상해에 대한 연구)

  • Kim, Seongjin;Jeon, Woojung;Park, Woosik;Seo, Youngil;Son, Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2013
  • This study assesses neck injury of occupants in a real traffic accident case that a preceding vehicle moved backward and impacted a parked vehicle at a low velocity. This case is different from a case of whiplash injury caused by rear impact on vehicle. The impact velocity was estimated from damages of the two vehicle bumpers and the displacement of the parked vehicle was also estimated from CCTV images. MADYMO simulation was performed based on the vehicle specifications and investigation report. The comparison of neck flexion moments with the corresponding injury criteria revealed that occupants of the parked vehicle might have hardly neck injury.

A Study on Estimate of Bumper Damageability about Vehicle Shape on Car to Car Crash (차대차 충돌시 차량형상에 따른 범퍼 손상성 평가에 대한 연구)

  • Lee, Sang-Je;Jeong, Yun-Seok;Koo, Do-Hoi;Lee, Mun-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.79-83
    • /
    • 2006
  • The present low speed crash regulations and RCAR test for insurance estimate do not tend to reflect car crash occurred on a road. Therefore, car makers are trying to readjust test standard be similar to a real situation. Passenger cars and SUV vehicles on the market will be subject to this study for car to car crash. In addition, we will discuss improvement of test methods for a low speed crash and direction of bumper design by performing this impact analysis.

A Study on the Repairing Cost Down Effects of the Car Bumper Systems with Gas tube in a Low Speed Crash Test (저속충돌시험을 통한 차량용 가스튜브범퍼의 복원수리비 절감효과에 대한 연구)

  • 박인송;조휘창
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.182-189
    • /
    • 2003
  • We have found that the damage of the front part for a vehicle and that of the rear part for a vehicle are the majority of frequency experienced by the traffic accidents. In conventional bumper system was designed by safety standard regulation at low speed crash. For example there are 2.5 mile and 5 mile bumper. The conventional bumper system was the crash from max 5.5 mile to 3 mile low speed occurs most frequently and results in the highest rate of repairing cost in statistically. On this study, in order to check the damageability and repairability of gas tube bumper system RCAR 15 km/h 40 % offset frontal crash test was adopted in low speed and we have a gas tube bumper parts test and vehicle test with gas tube bumper, we can find gas tube bumper system definitely can improve the damageability and repairability of the vehicles and contribute to down the repairing cost.