• Title/Summary/Keyword: 저산소

Search Result 660, Processing Time 0.038 seconds

The effect of erythropoietin in neonatal rat model of hypoxic-ischemic brain injury (Erythropoietin의 투여가 신생백서 저산소허혈뇌손상에 미치는 영향)

  • Kim, Heng-Mi;Choe, Byung-Ho;Kwon, Soon-Hak;Sohn, Yoon-Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. Erythropoietin (Epo) has been shown to exert neuroprotective effects in various brain injury models although the exact mechanisms through which Epo functions are not completely understood. This study investigates the effect of Epo on hypoxic-ischemic (HI) brain injury and the possibility that its neuroprotective actions may be associated with iron-mediated metabolism. Methods : HI brain injury was produced in 7-day-old rats by unilateral carotid artery ligation followed by hypoxia with 8% oxygen for 2 h. At the end of HI brain injury, the rats received an intraperitoneal injection of 5,000 units/kg erythropoietin. Random premedication with iron, deferoxamine, iron-deferoxamine, or saline were performed 23 d before HI brain injury. The severity of the brain injury was assessed at 7 d after HI. Results : Single Epo treatment post-HI brain injury reduced the gross and histopathological findings of brain injury. Iron premedication did not increase the incidence or severity of the injury as measured by the damage score. Deferoxamine administration before HI brain injury improved the brain injury as compared to no treatment or Epo treatment. Conclusion : These findings indicate that Epo provides neuroprotective benefits after HI in the developing brain. These findings suggest that Epos neuroprotective actions may involve reducing iron in tissues that mediate the formation of free radicals.

Material Stability Assessment of Low Oxygen and Heating Treatment (저산소 및 열처리법에 대한 문화재 재질 안정성 평가)

  • Jang, Han Gyeol;Baek, Na Yeon;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • Low oxygen treatment and heating treatment are used to prevent insects in the field of food science. These eco-friendly control methods can be applied to biological control technique in conservation treatment of organic cultural properties. To evaluate material stability, low-oxygen treatment and low oxygen treatment are applied to wood, pigment, paper and textile that are related to historical wooden buildings. As a result, wood moisture content declined after low oxygen treatment. But decline rate is a little, so it can be expected to turn back original state as time passes. And test result on pigment, paper, textile of chrominance and strength of test materials are stable. But after heating treatment, pigments are separated.

Neuroprotective Effects of Pinelliae Rhizoma Water-Extract by Suppression of Reactive Oxygen Species and Mitochondrial Membrane Potential Loss in a Hypoxic Model of Cultured Rat Cortical Cells. (배양대뇌신경세포 저산소증모델에서 유해산소생성억제 및 사립체막전위 소실방지에 의한 반하(半夏)의 신경세포사 억제 효능)

  • Kwon, Gun-Rok;Moon, Il-Soo;Lee, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.598-606
    • /
    • 2009
  • Oxidative stress by free radicals is a major cause of neuronal cell death. Excitotoxicity in hypoxia/ischemia causes an increase in reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP), resulting in dysfunction of the mitochondria and cell death. Pinelliae Rhizoma (PR) is a traditional medicine for incipient stroke. We investigated the effects of PR Water-Extract on the modulation of ROS and MMP in a hypoxic model using cultured rat cortical cells. PR Water-Extract was added to the culture medium at various concentrations (0.25${\sim}$5, 5.0 ${\mu}g/ml$) on day in vitro 12(DIV12), given a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hr), and cell viability was assessed on DIV15 by Lactate Dehydrogenase Assay (LDH assays). PR Water-Extract showed a statistically significant effect on neuroprotection (10${\sim}$15% increase in viability; p<0.01) at 1.0 and 2.5 ${\mu}g/ml$ in normoxia and hypoxia. Measurement of ROS production by $H_2DCF-DA$ stainings showed that PR Water-Extract efficiently reduced the number and intensity of ROS-producing neurons, especially at 1 hr post shock and DIV15. When MMP was measured by JC-1 stainings, PR Water-Extract efficiently maintained high-energy charged mitochondria. These results indicate that PR Water-Extract protects neurons in hypoxia by preventing ROS production and preserving the cellular energy level.

Effect of Hypoxia-Ischemia on Striatal Monoamine Metabolism in Neonatal Rat Brains (저산소-허혈 손상이 신생 흰쥐의 뇌 선조체(Striatum) Monoamine 대사에 미치는 영향)

  • Jee, Youn Hee;Kim, Hyung Gun;Park, Woo Sung;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.789-794
    • /
    • 2003
  • Purpose : We intended to evaluate the effect of hypoxia-ischemia on extracellular striatal monoamine metabolism in neonatal rat brains by in vivo microdialysis. Methods : The right common carotid arteries of five or six-day old rats were surgically ligated, and the probes for microdialysis were inserted into the right striatum with stereotaxic instrument. After stabilization for two hours, artificial cerebrospinal fluid was infused via the probe for microdialysis and samples were collected during hypoxia-ischemia and recovery periods at 20 minute intervals. The concentrations of DA(dopamine), DOPAC(3,4-di-hydroxyphenyl acetic acid), HVA(homovanillic acid), NE(norepinephrine), and 5-HIAA(5-hydroxy indole-acetic acid) were measured by HPLC(high performance liquid chromatography) and the changes were analysed. Results : The striatal levels of dopamine metabolites such as DOPAC and HVA, were significantly decreased during hypoxia-ischemia, and increased to their basal level during reoxygenation(P<0.05). Dopamine mostly increased during hypoxia but statistically not significant(P>0.05). DOPAC showed the most remarkable decrease($23.0{\pm}4.2%$, P<0.05), during hypoxia-ischemia and increase to the basal levels during reoxygenation($120.8{\pm}54.9%$, P<0.05), and HVA showed the same pattern of changes as those of DOPAC during hypoxia-ischemia($35.3{\pm}7.6%$ of basal level, P<0.05) and reoxygenation ($105.8{\pm}32.3%$). However, the level of NE did not show significant changes during hypoxia-ischemia and reoxygenation. The levels of 5-HIAA decreased($74.9{\pm}3.1%$) and increased($118.1{\pm}7.8%$) during hypoxia-ischemia and reoxygenation, respectively(P<0.005). Conclusion : Hypoxia-ischemia had a significant influence on the metabolism of striatal monoamine in neonatal rat brains. These findings suggest that monoamine, especially dopamine, and its metabolites could have a significant role in the pathogenesis of hypoxic-ischemic injury of neonatal rat brains.

Microenvironments and Cellular Proliferation Affected by Oxygen Concentration in Non-Small Cell Lung Cancer Cell Line (비소세포폐암주에서 산소 농도에 따른 미세 배양 환경과 세포 증식능)

  • Shin, Jong Wook;Jeon, Eun Ju;Kwak, Hee Won;Song, Ju Han;Lee, Young Woo;Jeong, Jae Woo;Choi, Jae Cheol;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.3
    • /
    • pp.242-250
    • /
    • 2007
  • Background: Abnormal angiogenesis can induce hypoxia within a highly proliferating tumor mass, and these hypoxic conditions can in turn create clinical problems, such as resistance to chemotherapy. However, the mechanism by which hypoxia induces these changes has not yet been determined. Therefore, this study was conducted to determine how hypoxia induces changes in cell viability and extracellular microenvironments in an in vitro culture system using non-small cell lung cancer cells. Methods: The non-small cell lung cancer cell line, A549 was cultured in DMEM or RPMI-1640 media that contained fetal bovine serum. A decrease in the oxygen tension of the media that contained the culture was then induced in a hypoxia microchamber using a $CO_2-N_2$ gas mixture. A gas analysis and an MTT assay were then conducted. Results: (1) The decrease in oxygen tension was checked the anaerobic gas mixture for 30 min and then reoxygenation was induced by adding a 5% $CO_2-room$ air gas mixture to the chamber. (2) Purging with the anaerobic gas mixture was found to decrease the further oxygen tension of cell culture media. (3) The low oxygen tension resulted in a low pH, lactic acidosis and a decreased glucose concentration in the media. (4) The decrease in glucose concentration that was observed as a result of hypoxia was markedly different when different types of media were evaluated. (5) The decrease in oxygen tension inhibited proliferation of A549 cells. Conclusion: These data suggests that tumor hypoxia is associated with acidosis and hypoglycemia, which have been implicated in the development of resistance to chemotherapy and radiotherapy.

Microbleeds in the Corpus Callosum in Anoxic Brain Injury (저산소 뇌 손상에서의 뇌량 미세출혈)

  • Chang Su Kim;Dong Woo Park;Tae Yoon Kim;Young-Jun Lee;Ji Young Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.5
    • /
    • pp.1184-1193
    • /
    • 2020
  • Purpose This study was performed to evaluate the relationship between callosal microbleeds and anoxic brain injury. Materials and Methods Twenty-seven patients with anoxic brain injuries were analyzed and retrospectively compared to the control group of patients without a history of anoxic brain injury using Fisher's exact test regarding comorbidities and cerebral microbleeds. The patient group was subdivided according to the presence of callosal microbleeds. Fisher's exact test was used to compare the presence of typical MRI findings of anoxic brain injury, use of cardiopulmonary resuscitation, and prognosis. The Mann-Whitney U test was used to compare the interval between the occurrence of anoxic brain injury to MRI acquisition. Results The prevalence of cerebral microbleeds in the patient group was 29.6%, which was significantly higher than that in the control group at 3.7% (p = 0.012). All cerebral microbleeds in the patient group were in the corpus callosum. Compared with the callosal microbleed-absent group, the callosal microbleed-present group showed a tendency of good prognosis (6/8 vs. 11/19), fewer typical MRI findings of anoxic brain injury (2/8 vs. 10/19), and more cardiopulmonary resuscitation (6/8 vs. 12/19), although these differences did not reach statistical significance (p = 0.35, p = 0.19, and p = 0.45, respectively). Conclusion Callosal microbleeds may be an adjunctive MRI marker for anoxic brain injury.

Taurine exerts neuroprotective effects via anti-apoptosis in hypoxic-ischemic brain injury in neonatal rats (신생 흰쥐의 저산소성 허혈성 뇌손상에서 항세포사멸사를 통한 taurine의 신경보호 효과)

  • Jeong, Ji Eun;Kim, Tae Yeol;Park, Hye Jin;Lee, Kye Hyang;Lee, Kyung Hoon;Choi, Eun Jin;Kim, Jin Kyung;Chung, Hai Lee;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.12
    • /
    • pp.1337-1347
    • /
    • 2009
  • Purpose:Taurine (2-aminoethanesulfonic acid) is a simple sulfur-containing amino acid. It is abundantly present in tissues such as brain, retina, heart, and skeletal muscles. Current studies have demonstrated the neuroprotective effects of taurine, but limited data are available for such effects during neonatal period. The aim of this study was to determine whether taurine could reduce hypoxic-ischemic (HI) cerebral injury via anti-apoptosis mechanism. Methods:Embryonic cortical neurons isolated from Sprague-Dawley (SD) rats at 18 days gestation were cultured in vitro. The cells were divided into hypoxia group, taurine-treated group before hypoxic insult, and taurine-treated group after HI insult. In the in vivo model, left carotid artery ligation was performed in 7-day-old SD rat pups. The pups were exposed to hypoxia, administered an injection of 30 mg/kg of taurine, and killed at 1 day, 3 days, 1 week, 2 weeks, and 4 weeks after the hypoxic insult. We compared the expressions of Bcl-2, Bax, and caspase-3 among the 3 groups by using real- time polymerase chain reaction (PCR) and western blotting. Results:The cells in the taurine-treated group before hypoxic insult, although similar in appearance to those in the normoxia group, were lesser in number. In the taurine-treated group, Bcl-2 expression increased, whereas Bax and caspase-3 expressions reduced. Conclusion:Taurine exerts neuroprotective effects onperinatal HI brain injury due to its anti-apoptotic effect. The neuroprotective effect was maximal at 1-2 weeks after the hypoxic injury.

Angiogenic Induction by Trichinella spiralis Infection through Thymosin β4 (티모신베타4에의한 선모충(Trichinella spiralis) 감염의 혈관신생 유도 기작)

  • Ock, Mee Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1177-1182
    • /
    • 2013
  • Trichinella spiralis (T. spiralis) has been reported to induce angiogenesis and a supply of nutrients and to act as a reliable waste disposal system by induction of the expression of the angiogenic molecule vascular endothelial cell growth factor (VEGF) during nurse cell formation. However, the mechanism underlying the induction of VEGF in nurse cells by T. spiralis has not yet been defined. Some research has pointed to the possibility of hypoxia in nurse cells, but whether hypoxia occurs in infected muscle or nurse cells has not been studied. It is also a matter of debate whether hypoxia induces the expression of VEGF and subsequent angiogenesis in infected muscle. Recent studies showed that thymosin ${\beta}4$, a potent VEGF-inducing protein, was expressed at a very early stage of muscle infection by T. spiralis, suggesting that VEGF is induced at an early stage in nurse cells. Furthermore, hypoxia was not detected in any nurse cell stage but was detected in inflammatory cells. The findings suggest that induction of angiogenesis by VEGF in T. spiralis-infected nurse cells is mediated by thymosin ${\beta}4$ and unrelated to hypoxia.

Hypoxemia In Liver Cirrhosis And Intrapulmonary Shunt Determination Using Tc-99m-MAA Whole Body Scan (간경화 환자에서의 저산소혈증과 Tc-99m-MAA 주사를 이용한 폐내단락 측정)

  • Lee, Kye-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.504-512
    • /
    • 1994
  • Background: It is well known that severe hypoxemia is often associated with liver cirrhosis without preexisting cardiac or pulmonary diseases. Pulmonary vascular impairments, more specifically, intrapulmonary shunting have been considered as a major mechanism. Intrapulmonary shunting arises from pulmonary vascular dilatation at the precapillary level or direct arteriovenous communication and has relationship with the characteristic skin findings of spider angioma. However, these results are mainly from Western countries where alcoholic and primary biliary cirrhosis are dominant cuases of cirrhosis. It is uncertain that the same is true in viral hepatitiss associated liver cirrhosis, which is dominant causes of liver cirrhosis in Korea. We investigated the incidences of hypoxemia and orthodeoxia in Korean cirrhotic patients dominantly composed of postnecrotic cirrhosis and the significance of intrapulmonary shunting as the suggested mechanism of hypoxemia, Method: We performed the arterial blood gas analysis separately both at the supine and errect position in 48 stable cirrhotic patients without the evidences of severe complications such as ascites, variceal bleeding, and hepatic coma. According to the results of arterial blood gas analysis, all patients were divided into hypoxemic and normoxemic group. In each group, pulmonary function test and Tc-99m-MAA whole body scan were performed. The shunting fraction was calculated based on the fact that the sum of cerebral and bilateral renal blood flow is 32% of the systemic blood flow. Results: The hypoxemia of $PaO_2$ less than 80 mmHg was observed in 9 patients(18.8%) and Orthodeoxia more than 10 mmHg was observed in 8 patients(16.7%). But there was no patient with significant hypoxemia of $PaO_2$ less than 60 mmHg. $PaO_2$ was significantly decreased in the patients with spider angioma than the pathients without spider angioma and showed no correlation with the serologic type and severities of liver function test findings. Any parameters of pulmonary function test did not demonstrate the difference between normoxemic and hypoxemic group. But hypoxemic group showed significantly increased shunt fraction of $11.4{\pm}4.1%$ than normoxemic group of $4.1{\pm}2.0%$ (p<0.05). Conclusions: Hypoxemia is not infrequently observed complication in liver cirrhosis and intrapulmonary shunting is suggested to p1ay a major ro1e in the development of hypxemia. But there was no great likelihood of clinically significant hypoxemia in our domestic cirrhotic patients predominantly composed of postnecrotic type.

  • PDF

$Cs^+$이온 반응성 산란에 의한 Si(111)-7$\times$7 표면에서의 산소 흡착 연구

  • Kim, Gi-Yeo;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.153-153
    • /
    • 2000
  • Si 산화는 반도체 공정상 필요한 과정으로 산업적으로나 학문적으로 중요하고 많이 연구되었다. 이중에서 Si(1110-7x7표면에서 초기 흡착된 산소는 준안정적 상태로 존재하며 표면온도, 산소의 노출량 그리고 진공도에 따라 그 수명이 제한된다. 이러한 준안정적 상태의 산소의 화학적 성질은 여러 표면분석장비가 동원되어 연구되었으나 아직까지 논쟁이 되고 있다. 이 경우 산소가 어떤 상태로 존재하는가는 표면화학종을 검출함으로서 해결될 수 있다. 저에너지 Cs+ 이온 반응성 산란은 이러한 요구를 충족시킬수 있는 가장 적합한 실험 방법중의 하나이다. 저에너지 Cs+ 이온 산란의 특징 중의 하나는 입사된 Cs+ 이온이 표면에 흡착된 화학종과 충돌후 탈착되면서 반응을 하여 송이 이온을 형성한다는 것이다. 이 송이 이온을 관측함으로서 표면에 존재하는 화학종을 알아 낼 수 있다. 이에 산소가 흡착된 Si(111)-7x7 표면에서의 산소의 준안정적 상태가 저에너지 Cs+ 이온 산란 실험을 통하여 연구되었다. 실험은 0.2-2L(1Langmuir = 10-6 Torr x 1 sec) 산소 노출량과 -15$0^{\circ}C$ - $25^{\circ}C$의 표면온도 그리고 5eV - 20eV의 Cs+ 이온 충돌에너지에서 CsSiO+ 이온이 유일한 생산물로서 검출되었다. CsSiO+ 이온은 입사된 Cs+ 이온과 표면에 존재하는 SiO 분자가 충돌 후 반응하여 탈착된 것으로 생각된다. 이것은 낮은 산소 노출량 즉, 초기 산화 단계에서 SiO가 표면에 존재한다는 것을 의미한다. 즉, 산소 분자는 산화단계의 초기에 해리되어 표면에 흡착되고 선구물질인 SiO를 형성함을 제시한다. 최근의 이론적 계산인 density functional calculation에서도 산소분자가 Si(111)-7$\times$7 표면의 준안정적 산화상태의 선구물질일 가능성을 배제한다. 이는 본 저에너지 Cs+ 이온 반응성 산란실험을 뒷받침하는 계산 결과이다. 높은 Cs+ 이온 충돌에너지에서 CsSi+, Si+, SiO+, Si2+, Si2O+ 등이 추가로 검출되었다. 이는 CsSi 이온을 제외하고 수 keV의 충돌에너지를 사용하는 이차 이온 질량 분석법과 비슷한 결과이다.

  • PDF