• 제목/요약/키워드: 저감효과

검색결과 3,312건 처리시간 0.022초

치과용 초소형 X-선 튜브의 선량평가 (Dosimetric Evaluation of a Small Intraoral X-ray Tube for Dental Imaging)

  • 지윤서;김연우;이레나
    • 한국의학물리학회지:의학물리
    • /
    • 제26권3호
    • /
    • pp.160-167
    • /
    • 2015
  • 의료용 x선 촬영 장치에 있어서 환자에게 피폭되는 선량이 가장 중요한 관심사 중의 하나이다. 본 연구팀에서는 전 세계 최초로 입안에 삽입이 가능한 초소형 x-선 영상 장치가 개발되었는데 이러한 영상장치를 임상에서 사용하기 위해서는 피폭 선량의 평가가 필수적이다. 따라서 본 연구에서는 신개념 치과용 영상장치의 선량을 평가하기 위하여 1) 돼지 턱뼈 팬텀을 직접 제작하여 영상의 질을 평가 하였고, 2) 실제 임상에서 사용가능한 촬영 조건을 결정하였으며, 3) 결정된 촬영 조건에서의 선량을 평가 하였다. 한국 식약처에서 제시하는 치근단 촬영에 대한 환자 선량 권고량(DRLs) 기준에 근거하여 새 개발 장비의 입사표면선량(ESD)와 면적선량(DAP) 측정 방법을 고안하고 각각의 선량 값을 측정하였다. 관전압이 45~55 kV, 관전류가 300 mA 까지 사용 가능한 xoft 사의 초소형 x선 튜브를 사용하였다. 사용된 검출기는 active area가 $72{\times}72mm$ 이고 픽셀 사이즈는 $48{\mu}m$ 이다. 제작된 돼지턱뼈 팬텀은 1 frame/sec의 조건하에 영상을 획득 하였으며, 촬영 조건 최적화를 위하여 관전류를 $20{\sim}80{\mu}A$로 변화시키면서 50 frame씩 영상을 획득하였다. 또한, 상용화 치과용 영상시스템(모델명: CS 2100, 제조사: Carestream Dental LLC 및 모델명: EXARO, 제조사: HIOSSEN)을 이용하여 돼지턱뼈 팬텀의 비교영상 평가를 시행하였다. CS 2100는 60 kV, 7 mA (노출시간:0.125 s)로 하였으며, EXARO는 60 kV, 2 mA로 설정하였다. 선량 평가는 광자극 형광 선량계를 이용하여 입사표면선량을 측정하였으며, 팬텀은 PMMA 재질의 제작된 원통형 팬텀을 이용하였다. 선량계는 팬텀 표면상의 조사야 내부에 2개 및 소스와의 5 cm 거리상에 1개를 위치하여 측정하였다. 빔 조사 조건은 51, 101, 141, $196{\mu}As$로 설정하였다. 면적선량은 소스와 검출기간의 거리가 5 cm 위치에 배치하여 측정하였으며, 이 때 촬영조건은, 관전류 41, 99, 144, 207, $276{\mu}As$의 조건하에서 측정하였다. 임상에서 적용 가능한 관전압과 관전류는 X-선 세기 8000~9000인 지점에서의 관전류 값인 0.051 mAs 이다. 상용화 장비와 영상비교를 한 결과, 개발 장비의 조사야가 훨씬 작음에도 불구하고 치아 및 치아 주위 조직의 영상이 더 우수함을 확인하였다. 또한, 영상 최적화 조사조건인 $51{\mu}As$에서 입사표면선량(ESD)은 식약처 및 IAEA의 권고치보다 훨씬 낮은 1.369 mGy 이다. 조사야 내부의 선량 분포는 표준편차 5~10% 내외로 균일성이 우수 하였다. 측정된 면적선량(DAP)은 $82.4mGy*cm^2$으로 상용화 장비보다 조사야가 훨씬 작음에도 불구하고 식약처의 권고치보다 낮은 값을 보였다. 이러한 연구를 통해서 새 개발 장비의 영상의 우수성과 기존 장비 대비 방사선량에 대한 저감 효과를 확인 할 수 있었으며 치과 장비 개발에 있어서 X선 특성 연구에 대한 기술과 노하우를 축적할 수 있었다.

O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성 (Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process)

  • 염훈식;손희종;서창동;김상구;류동춘
    • 대한환경공학회지
    • /
    • 제35권12호
    • /
    • pp.889-896
    • /
    • 2013
  • 수중의 미량 유해물질 제거를 위해 AOP 공정에 대한 관심이 증대되고 있다. 낙동강 하류에 위치한 정수장들은 대부분 $O_3/BAC$ 공정을 채택하여 운전 중에 있으며, AOP 공정의 일종인 peroxone 공정의 적용에 많은 관심을 가지고 있다. 본 연구에서는 $O_3/BAC$ 공정을 운전 중인 정수장에서 과산화수소를 투입할 경우에 후단의 BAC 공정에서의 잔류 과산화수소의 제거 특성을 biofiltration 공정과 함께 평가하였다. 유입수의 수온 및 과산화수소 농도변화 실험에서 biofilteration 공정은 낮은 수온에서 유입수 중의 과산화수소 농도가 증가하면 급격히 생물분해능이 저하된 반면, BAC 공정에서는 비교적 안정적인 효율을 유지하였다. 유입수의 수온을 $20^{\circ}C$, 과산화수소 투입농도를 300 mg/L로 고정하여 78시간 동안 연속으로 투입한 실험에서 biofilteration 공정은 EBCT 5~15분의 경우 운전 24~71시간 후에는 유입된 과산화수소가 거의 제거되지 않았으나, BAC 공정에서는 78시간 후의 과산화수소 제거율이 EBCT 5~15분일 때 38%~91%로 나타났다. 또한, 78시간 동안 연속 투입실험 후의 biofilter와 BAC 부착 박테리아들의 생체량과 활성도는 각각 $6.0{\times}10^4CFU/g$$0.54mg{\cdot}C/m^3{\cdot}hr$$0.4{\times}10^8CFU/g$$1.42mg{\cdot}C/m^3{\cdot}hr$로 나타나 운전초기에 비해 biofilter에서는 생체량과 활성도가 각각 99%와 72% 감소하였으며, BAC의 경우는 각각 68%와 53%의 감소율을 나타내었다. BAC 공정에서 생물분해 속도상수($k_{bio}$)와 반감기($t_{1/2}$)를 조사한 결과, 수온 $5^{\circ}C$에서 과산화수소 농도가 10 mg/L에서 300 mg/L로 증가할수록 $k_{bio}$$1.173min^{-1}$에서 $0.183min^{-1}$으로 감소하였고, $t_{1/2}$은 0.591 min에서 3.787 min으로 증가하였다. 수온 $25^{\circ}C$의 경우 $k_{bio}$$t_{1/2}$$1.510min^{-1}$에서 $0.498min^{-1}$ 및 0.459 min에서 1.392 min으로 나타나 수온 $5^{\circ}C$에 비해 수온이 $15^{\circ}C$$25^{\circ}C$로 상승할 경우 $k_{bio}$는 각각 1.1배~2.1배 및 1,3배~4.4배 정도 증가하였다. $O_3/BAC$ 공정을 운전 중인 정수장에서 peroxone 공정의 적용을 위해 과산화수소 투입을 고려할 경우, 후단의 BAC 공정에서 잔류 과산화수소를 효과적으로 제거 가능하였고, 고농도의 과산화수소 유출사고시에는 BAC 공정의 EBCT를 최대한 증가시켜 운전할 경우 수중의 과산화수소 농도를 최대한 저감시킬 수 있을 것으로 판단된다.