• Title/Summary/Keyword: 저감재

Search Result 962, Processing Time 0.03 seconds

Correlation between Dynamic Characteristics of Isolation Material and Impact Noise Reduction of Light-weight Impact Source (충격음 저감재의 동특성과 실험실 경량충격음레벨 저감량의 상관관계)

  • 이주원;정갑철;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.191-195
    • /
    • 2003
  • 충격음 저감재의 동탄성계수와 감쇠계수는 차단성능을 평가하는데 있어 중요한 물성치가 된다. 저감재의 동탄성계수는 뜬바닥구조의 고유진동수를 결정짓게 되며, 저감재의 동탄성계수가 높을수록, 즉 고유진동수가 높아짐에 따라 실험실 경량충격음레벨 저감량은 지수함수적으로 감소됨을 실험을 통해 알 수 있다. 또한, 저감재를 포함한 뜬바닥구조를 1자유도 진동계로 가정한 이론값과 실험실 경량충격음레벨 저감량의 결과가 비교적 잘 일치하는 것으로 나타났으며, 이 때 감쇠계수의 영향은 반드시 고려되어야 한다.

  • PDF

Study on revise the border for subbasin considering urban drainage system (내배수시설을 고려한 유역 경계 재설정 기법 연구)

  • Song, Yang Ho;Park, Moo Jong;Lee, Jung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.604-604
    • /
    • 2016
  • 본 연구에서는 내배수시설 기준 배수구역 경계 재설정 기법을 제안하고자 한다. 내배수시설 경계 재설정 기법이란 경계 재설정에 따른 침수저감 효과를 보다 명확히 나타냄으로써 시스템의 유출량 분산을 통한 침수발생 저감을 목적으로 한다. 기존의 유역 경계 설정이 설계자의 임의성이 개입되어지는 것에 비하여 침수저감 이라는 구체적이고 객관적인 판단 근거에 유역 경계를 설정하는 판단기준을 제공하는 것을 목적으로 한다. 내수침수에 대한 피해 저감을 목표로 하며, 개선된 내배수시스템 구성을 바탕으로 경계 재설정 기법을 실유역에 적용하였다. 경계 재설정을 통한 침수 저감효과 검토는 지리적으로 연속된 인접한 내배수시설 유역을 대상으로 한 기법에 해당하며, 해당 유역간의 효율적인 내배수시설 운영을 포함한 분석을 통해 내수배제 능력을 확보하도록 하는데 의미가 있다. 즉, 빗물펌프장을 이용한 펌프 조기가동 효과를 토대로 침수저감 효과를 검토하고 소화하지 못하는 유출량에 따른 월류발생을 저감하기 위한 경계 재설정 기법에 해당한다. 향후 최적화 기법을 해당 기법에 적용하기 위한 다양한 분석 결과들을 바탕으로 내배수시설 경계 재설정 모형 개발을 위한 사전 검토단계에 해당한다.

  • PDF

Properties on the Shrinkage of High Performance Concrete Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 고성능 콘크리트의 수축특성)

  • Han, Cheon-Goo;Kim, Sung-Wook;Koh, Kyoung-Taek;Pei, Zheng-Lie
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.785-793
    • /
    • 2003
  • This study is intended to analyze the effectiveness of expansive additive, shrinkage reducing agent and combination of the two to reduce the autogenous and drying shrinkage of high performance concrete using mineral admixture such as fly ash, blast furnace slag powder and silica fume. According to results, when expansive additive and shrinkage reducing agent are mixed within an appropriate mixing ratio, fluidity and air content are not influenced, and the enhancement of compressive strength is favorable at the age of 91 and 180days. At the mixing ratio of expansive additive of 5% and 10%, the autogenous and drying shrinkage is reduced by 32∼68% and 25∼49% respectively in comparison with plain concrete. And they are reduced by 18∼34% and 16∼26% respectively at the mixing ratio of shrinkage reducing agent of 0.5% and 1.0%, compared with plain concrete. The mixture of EA-SR combined with expansive additive and shrinkage reducing agent is most effective for reduction of shrinkage. Therefore, it is considered that the using method in combination with expansive additive and shrinkage reducing agent is effective to reduce the shrinkage of high performance concrete using mineral admixture such as fly ash, blast slag powder and silica fume.

Drying Shrinkage of Concrete Combining Expansive Additives and Shrinkage Reducing Agent (팽창재와 수축저감제를 병용한 콘크리트의 건조수축 특성)

  • Han, Cheon-Goo;Han, Min-Cheol;Song, Seung-Heon;Yoon, Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.397-404
    • /
    • 2006
  • This paper investigates experimentally the effect of combined addition of expansive additive and shrinkage reducing agent(SRA) on setting time, compressive strength and drying shrinkage of concrete. An increase of EA and SRA content leads to a reduction in flowability, which causes the increase of superplasticizer dosage, while air content increases. For setting time, in spite of increased superplasticizer dosage, with the increase of EA and SRA, setting time shortens. This is due to the presence of alkali ion by SRA and the faster formation of ettringite. At dosage of 5.0% of EA, concrete has the highest compressive strength and above that dosage, compressive strength decreased. On the contrary, the increase of SRA dosage results in a decrease in compressive strength. Combined addition of EA of 5.0% and SRA of 1.0% shows a comparable strength with control concrete. For drying shrinkage, as expected, the increase of EA and SRA dosage leads to reduction of drying shrinkage markedly. Moreover, combined addition of EA and SRA has better drying shrinkage reduction effect than individual use of EA and SRA by as much as $5{\sim}16%$. Optimal combination of EA and SRA is fixed at 5.0% of EA and 0.5% of SRA based on the consideration of the effect of EA and SRA on fresh state, compressive strength and shrinkage of concrete.

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

Autogenous Shrinkage and Fundamental Properties of the High Strength Mortar Containing Waste Vegetable Oil (폐식용유를 사용한 고강도 모르터의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Song, Ri-Fan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • The objective of this paper is to explore the possibility of reuse of waste vegetable oil (WO) as an autogenous shrinkage reducer for high strength concrete and to compare the amount of autogenous shrinkage of the mortar using existing shrinkage reducing agent(SR) and expansive additives(EA). According to test results, as the dosages of WO increased, flow value exhibited to decrease, while the use of SR increased flow value. For the effect of WO on strength, although the use of SR and WO resulted in a slight decrease in compressive strength at early age, at 91 days they had similar strength level of the plain mixture. For autogenous shrinkage, as expected, the addition of WO, SR and EA resulted in a decrease of autogeneous shrinkage considerably especially, WO had superiority in autogenous shrinkage reducing effect compared with the case of SR and EA.

  • PDF

An Experiment on Reduction of Infrasonic Underwater Self-Noise (초저주파 대역 수중 자체소음 저감에 관한 실험 연구)

  • Lee, Seong-Wook;Lee, Yong-Kuk;Kim, Seong-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • The effects of screening hydrophones with open-cell foams for reduction of the infrasonic self-noise induced by the flow around hydrophones are investigated by at-sea experiment. Test results of the 10 ppi polyurethane open-cell foams with different thickness show that the foams of 1 cm and 3 cm thickness reduce the flow-induced self-noises up to 20 dB and 28 dB at the frequency band of 2-10 Hz, respectively.

Shrinkage Properties of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 사용한 고성능 콘크리트의 수축 특성)

  • Koh, Kyung Taek;Park, Jung Jun;Ryu, Gum Sung;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.787-794
    • /
    • 2006
  • Generally, high performance concrete has characteristics such as low water-cementitious material ratio, lots of unit binder powder, thus the heat of hydration, autogenous shrinkage are tend to be increased. This study is to investigated the effect of the expansive additive and shrinkage reducing agent on the shrinkage properties of high performance concrete as a study to develop the reduction technology of the concrete shrinkage. Test results showed that the expansive additive and shrinkage reducing agent were effective the reduction of shrinkage of high performance concrete. Especially, the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separately using method of that. Also, it analyzed that the combination of expansive additive of 5% and shrinkage reducing agent of 1% was the most suitable mixture, considering to the fluidity, strength and shrinkage properties.

A Study on Fire Resistance and Spalling of HPC Beam with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건하에서 Fiber Cocktail을 혼입한 고강도 콘크리트 보의 폭렬특성 및 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.126-134
    • /
    • 2009
  • In an attempt to control the spalling in high strength concrete, spalling reducer was mixed to identify the effect and thermal characteristics of concrete beam member at high temperature. The member was manufactured in such as way of adding 40~60MPa of high strength concrete into spalling reducer, and then fire resistance performance were monitored under the ISO standard fire load condition in accordance with KS F 2257. As a result of test, fore rate performance of 40MPa beam without spalling reducer was 180minutes, 50MPa was 174minutes and 60MPa was 152minutes, indicating that 50MPa and 60MPa beam appeared 6~28minutes short to become a 3-hour rate. However, 50 and 60MPa beam mixed with spalling reducer appeared to have satisfied the requirements for 180minutes. A spalling was occurred in surface of 50 and 60MPa beam mixed without spalling reducer, while no spalling or surface failure was occurred with 50 and 60MPa beam mixed with spalling reducer. Thus polypropylene fiber mixed with the concrete proved to be effective, but viewing that the surface of 60MPa was peeled off partially, the steel fiber mixed appeared not to be effective for the beam more than 60MPa.

Physical Properties of Concrete Using Shrinkage Reducing Admixture and Expansive Additive (수축저감제와 팽창재를 혼입한 콘크리트의 물리적 특성)

  • Jung, Yang-Hee;Song, Young-Chan;Kim, Yong-Ro;Han, Hyung-Sub;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.919-922
    • /
    • 2008
  • This paper reports the physical and shrinkage properties of concrete using expansive additive(E) and three shrinkage reducing admixtures(SRA1, 2, 3) in order to reduce shrinkage of concrete. For the properties of fresh concrete, the use of SRA1, 2, 3 results in a increase in fluidity and decrease in the dosage of super plasticizer as much as 0.05$\sim$0.1%. And For the properties of hardened concrete, the use of SRA1, 2, 3 results in a decrease in compressive, tensile and flexural strength slightly. For drying shrinkage properties, the use of SRA3 is the most effective for reduction of shrinkage, and the next best way to reduce shrinkage is combination with expansive additive(E) and shrinkage reducing admixture(SRA) or the using of expansive additive(E).

  • PDF