• Title/Summary/Keyword: 재활용 페라이트

Search Result 5, Processing Time 0.022 seconds

A Study on the Removing of $SiO_2$ in Ferromanganese Dust by Fritting Method (Fritting법에 의한 페로망간 분진내 $SiO_2$제거에 관한 연구)

  • 임종호;이승원
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • Ferromanganese dust is an oxide substance of Mn. If imprities are removed and oxidation degree is controlled, the dust can be recycled for soft ferrite materials. The ferromanganese dust contained about 7 kinds of impurities, expecially about 9000 ppm of $SiO_2$ contents of the ferromanganese dust from 9000 ppm to under 500 ppm by fritting method. The $SiO_2$ in ferromanganese dust can be converted into water soluble compounds by alkali fritting and removed by water leaching. KOH and NaOH were used. The most effective conditions to get rid of $SiO_2$ from the dust are that the weight ratio of alkali to ferromanganese dust is 1.75 and fritting is run at $550^{\circ}C$ for 1 hour.

  • PDF

Development of Composite Sr Ferrite EM Wave Absorbers for GHz Frequency (GHz 대역용 복합형 Sr 페라이트 전파 흡수체의 개발)

  • Kim, Dong-Il;Moon, Sang-Hyun;Shin, Sung-Jae;Song, Jae-Man;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.503-507
    • /
    • 2004
  • We prepared EM wave absorbers by using recycled Sr ferrite for GHz frequency, and investigated the effects of carbon additions and preparation temperatures on their EM wave absorption properties. A Sr ferrite EM wave absorber with the ratio of Sr ferrite: silicon rubber: carbon = 80 : 13.6: 6.4 wt% prepared at 7$0^{\circ}C$ showed -24 dB at 9.4 GHz and -23 dB at 5.5 GHz for 2 mm and 3 mm thickness, respectively.

Development of EM Wave Absorbers for GHz Frequency (GHz 대역용 전파흡수체의 개발)

  • 문상현;신승재;김동일;송재만;최정현;김기만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.17-22
    • /
    • 2004
  • We prepared EM wave absorbers by using recycled Ba and Sr ferrites for GHz frequency, and investigated the effects of carbon additions, thickness and preparation temperatures on their EM wave absorption properties. We clarified that it is very important to consider carbon amounts in Ba and Sr ferrites and preparation temperature for Ba and Sr ferrite EM wave absorbers with high quality. In this study, the developed a EM Wave absorber satisfying over 20 dB.

  • PDF

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

Synthesis of Functional Complex Material from Spent Alkaline Manganese Battery (폐(廢)알칼리망간전지(電池)로부터 기능성(機能性) 복합소재(複合素材) 제조(製造))

  • Kim, Tae-Hyun;Lee, Seoung-Won;Sohn, Jeong-Soo;Kang, Jin-Gu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Fundamental studies for the synthesis of Mn-Zn ferrite powder were investigated using a series of leaching and coprecipitation processes from spent alkaline manganese batteries. Zinc and Manganese dissolution rates obtained at the reaction conditions of 100g/L pulp density, 3.0M $H_2SO_4$, $60^{\circ}C$ and 200 rpm with 30 ml $H_2O_2$ as a reducing agent were more than 97.9% and 93.9% and coprecipitation of Mn-Zn ferrite powder was performed according to various reaction conditions such as temperature, time and amount of $O_2$ gas injection using the leaching solution. As a result of coprecipitation, Mn-Zn ferrite could be synthesized directly at low temperature in the reaction condition pH 12, $80^{\circ}C$, $O_2$ 1.3 L/min. and 400 rpm. The synthesized Mn-Zn ferrite powder was spherical powder of $0.143{\mu}m$ particle size and had a saturation magnetization about 80 emu/g.