• Title/Summary/Keyword: 재하하중 증가비

Search Result 127, Processing Time 0.024 seconds

Model Tests on the Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • 조삼덕;안태봉;이광우;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.109-116
    • /
    • 2004
  • The model tests are conducted to assess the behavior characteristics of geogrid reinforced soil walls according to different surcharge pressures and reinforcement spacings. The models are built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used is geogrid(tensile strength 2.26t/m). Decomposed ganite soil(SM) is used as a backfill material. The strain gauges and LVDTs are Installed to obtain the strain in the reinforcements and the displacements of the wall face. From the results, it can be concluded that the more the reinforcement tensile strength increases, the more the wall displacements and the geogrid strains decreases. The maximum wall displacements and geogrid strains of the model walls occur due to the uniform surcharge pressure at the 0.7H from the bottom of the wall. The horizontal displacements of the wall face nonlinearly increase with the increase of surcharge pressures, and this nonlinear behavior is significantly presented for larger surcharge due to the nonlinear tensile strength-strain relationship of the reinforcements.

Evaluation of Load Transfer Characteristics of Barrette Pile Based on Bi-directional Loading Tests (양방향 재하시험결과를 활용한 바렛말뚝의 하중전이특성 평가)

  • Park, Seong Wan;Lim, Dae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.41-49
    • /
    • 2009
  • Due to the increased size of civil infrastructure and the cost of materials, the needs exists for utilizing large sized cast-inplace piles in lieu of conventional precast piles. Among them, the barrette pile has become more commonly used in fields where a diaphragm wall is the retaining wall, to improve workability and economical efficiency, and to ensure hole stability under deep soil layers. In this paper, the bearing capacity and displacement characteristics of the barrette pile are evaluated by using the bi-directional loading test data obtained from four different sites. In addition, the design value of pile shaft resistance, ${\beta}$, is assessed with previous literatures and load transfer analysis. Finally, numerical analyses were performed to analyze the load-displacement behavior, and the interface effect on the piles, using the 3-dimensional finite element method.

Consolidation Characteristics of Soft Ground in Suction Drain Method (석션드레인공법이 적용된 연약지반의 압밀특성에 관한 사례 분석)

  • Kim, Byung Il;Kim, Do Hyung;Kim, Soo Sam;Han, Sang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.287-294
    • /
    • 2009
  • Suction Drain Method is a relatively new technique to improve soft ground using vacuum pressure which can be directly applied to the soft ground through drains that the pore water pressure around them are decreased without changing total stress. This can accelerate volume changes and increase strength of the ground. This paper shows the results of field test of the suction drain method applied at dredged and reclaimed clay. To evaluate the improvement effects of soft ground by the suction drain method, this paper analyzed real-time field measurements to the results of the laboratory tests and numerical analysis. The comparisons of the settlement and shear strength between suction drain method and surcharge preloading method show possibilities for replacement of the preloading methods. The settlements by suction drain method were 2.3 times larger and undrained shear strength were 300%~400% higher than surcharge method. Moreover, the water content is decreased about 30% and the preconsolidation pressure is increased about $0.52kgf/cm^2$.

A Study on the Determination of Bearing Capacity of Polluted Soils with Various Concentrations (농도가 다른 오염지반의 지지력 결정에 관한 연구)

  • 안종필;박상범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.57-69
    • /
    • 1999
  • This study investigates the existing theoretical backgrounds for bearing capacity determination according to the plasticity of soils when unsymmetrical surcharge is loaded on polluted soft soils. It also investigates the behavior of the displacement and bearing capacity by unsymmetrical surcharge on the Polluted soft soils. by comparing the analytical results and the actual measurements performed through the model test. Model tests were carried out as follows : soil tank, bearing frame and bearing plate are made for the test ; the water content in soil tank was kept constant while the contaminants in natural soils and polluted material were gradually increased ; unsymmetrical surcharge is increased at regular intervals and then the amounts of settlement, lateral displacement and upheaval are observed. In conclusion, the value of critical surcharge was expressed as $q_{ cr}= 2.78_{Cu}$ which was similar to those $Tschebotarioff(q_{cr}=3.0_{Cu)$ and $Meyerhof(q_{cr}=(B/2H+\pi/2_{Cu})$ had proposed. The value of ultimate capacity was expressed as $q_{ult}=4.84_{Cu}$ which was similar to that of Prandtl.

  • PDF

Long-term Flexural Behavior of RC Beams Strengthened in Flexure with NSM Fe-SMA Strips (표면매립된 철계-형상기억합금 스트립으로 휨 보강된 RC보의 장기 휨거동)

  • Hong, Ki-Nam;Lee, Sugyu;Han, Sang-Hoon;Kang, Panseung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.103-110
    • /
    • 2018
  • The long-term flexural behavior of reinforced concrete (RC) beams strengthened with an iron based-shape memory alloys (Fe-SMAs) by a near-surface mounted (NSM) method was evaluated. The pre-strained values of 2% and 4% and introduced prestressing force by an activation of a shape memory effect of the Fe-SMA strengthening material were considered as experimental variables. Deflections at the center of the RC beams were measured for six months after the 1 tonf concrete weight was loaded on the beam. Experimental results show that the deflections decreased because of the increased flexural stiffness of beams strengthened with the Fe-SMA strips. On the contrary, with increased pre-strained values, the deflection increased due to stiffness reduction of the strengthening material. It was confirmed that the specimens incorporating the prestressed force showed the deflection reduction of about 30%, compared to the ones without the prestressed force.

Numerical Assessment of Load Sharing Behavior on Capped Micropile Foundation Systems (캡으로 연결된 마이크로파일 기초시스템의 하중분담거동에 관한 수치해석 평가)

  • Jung, Dong-Jin;Park, Seong-Wan;Cho, Kook-Hwan;Sim, Young-Jong
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.17-26
    • /
    • 2009
  • The concrete cap, which was established on the top of the micropile, usually considered as an important structural component in micropile supported foundation systems. However, relatively few studies have been made on the load sharing behavior of the capped micropile foundation systems. The primary objective of this study is to assess the load sharing behavior of the capped micropile foundation systems. Therefore, a full-scale test on an instrumented capped micropile is conducted for establishing the load-displacement responses. Nonlinear numerical method was used to quantify the load sharing behavior of the pile cap and micropile respectively. As a result, it was found that the pile cap shares about 50% load from final loading steps in the case of 2 by 1 micropile foundation systems. In the case of 2 by 2, the pile cap shares about 30% load from final loading steps. In addition, the load sharing behavior of the micropile cap becomes larger with an increase in spacing and the battered angle of micropile respectively.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

Laboratory Test of CLSM with Botton Ash (Bottom ash를 이용한 유동성 뒤채움재의 실내모형실험)

  • Lee, Kwan-Ho;Lee, Kyung-Joong;KIm, Yun-Tae;Cho, Jae-Yun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.197-197
    • /
    • 2011
  • 최근 들어 전력 사용량의 증가로 인한 화력발전소의 부산물인 석탄회 중 바텀애시와 각종 공공사업과 관련하여 해마다 현장발생토의 발생량이 지속적으로 증가하고 있는 추세이다. 바텀애시와 현장발생토사를 효과적으로 재활용하는 방법 중 유동성 뒤채움재를 개발하여 활용하는 방안을 모색하기 위한 연구이다. SP로 분류된 흙 현장발생토와 서천 화력발전소에서 발생하는 석탄회 중 입경이 0.9~1.5mm의 바텀애시만을 선별하여 현장발생토와 바텀애시의 비율을 7 : 3으로 변환한 최적배합을 선정하여 강재로 제작된 가로 80cm, 세로 60cm, 높이 90cm의 모형토조를 이용하여 실험을 진행하였으며, 사용상 지하 매설이 되는 관의 거동 특성은 확인하기 위하여 내경 30cm, 두께 8mm의 연선관 중 하나인 PVC관을 원형지하매설관으로 선정하여 배합을 타설하는 과정과 타설 후 7일간의 양생기간을 거친 후 차량하중으로 가정할 수 있는 하중을 가하여 원형지하매설관의 관외부에서 수직방향과 수평방향의 토압과 관내부의 수직 수평방향 변위 그리고 관 자체의 횡 종단 변형을 측정하여 원형지하매설관의 거동특성을 파악하였다. 타설시 지하매설관은 유동성 뒤채움재의 특성으로 인하여 시간이 지남에 따라 안정화되는 것을 확인할 수 있었으며, 최대하중을 3300kgf로 하여 하중 재하 후 지하매설관의 거동특성은 대체적으로 일반 모래를 사용하여 실험한 값보다 적은 변형 특성을 보이고 있으나 수평토압의 경우 일반적인 흙의 변형과 전혀 상이한 결과값을 보이는 경우도 있어 추가적인 실험 및 고찰의 필요하다. 본 실험에서 사용한 최적배합비 이외의 배합으로 같은 실험을 수행하여 바텀애시 량의 가감 및 재활용 재료인 폐타이어 고무칩등을 첨가한 실험을 계획하고 있으며 추후 실내시험과 모형실험을 토대로 유한요소해석을 추가로 시행하여 실험값과 해석값의 비교를 할 예정이다.

  • PDF

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.