• Title/Summary/Keyword: 재하중 보수

Search Result 57, Processing Time 0.023 seconds

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

A Study on the Safety Test Regulation for the Metallic Sound Barrier of the Absorption Type (금속재 흡음형 방음벽의 안전 시험 규정 분석 연구)

  • Huh, Young
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.5-15
    • /
    • 2002
  • For the noise reduction measures in a construction field where noise sources such as blasting and pile driving works exist, the construction of the sound barrier near the noise source or receiver is often the most economic measure in order to exclude the propagated sound. The dimension of the barrier is decided by the noise and construction design, and the constructive quality of a soundproof panel shall be secured in accordance with KS F4770 to guarantee the safety of sound barriers. In this paper the problems included in the KS F4770-1 that is the regulation for the metallic sound barrier of the absorption type are identified and it is suggested what to be corrected or improved. Through a series of the analyses, conclusion were reached that it is required to improve test methods in KS F4770-1 as well as to break down loads for building more cost-effective sound barrier. In addition, KS F4770-1 was compared with ZTV-Lsw 88 which is the german regulation for sound barrier design. As a result, it was found that the Korean regulation is more conservative than that of Germany.

Effect to Material Strength Recovery of Stepped Patch Repair with Epoxy based Particle Reinforced GFRP Composites under Hygrothermal Environment (에폭시 기지 입자 강화 GFRP를 사용한 계단형 패치 보수법이 고온 고습 환경하에서 재료의 물성 회복에 미치는 영향)

  • Jung, Kyung-Seok;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.88-93
    • /
    • 2018
  • In this study, damaged composite laminates were repaired by a stepped patch repair method using halloysite nanotube(HNT) and milled carbon(MC) reinforced composite materials with different amount of the particles. And the mechanical and structural effects of the particles on the interface between the damaged and repair surfaces were analyzed. At this time, after exposing them to a harsh environment of high temperature and humidity for a long time, the recovery rate of the material properties relative to the material forming the damaged plate was compared. As a result, at $70^{\circ}C$ high temperature distilled water, the hygroscopicity of the HNT/GFRP composites was significantly different from that of the MC/GFRP composites. Especially, 0.5, 1 wt. % HNT was added, the moisture absorption rate was the lowest and this was the factor that contributed to the mechanical strength increase. On the other hand, MC showed a high hygroscopic resistance only with a small amount, and the strength was different according to the action direction of the load, and the addition amount was also different.

Flexural Strength of Reinforced Concrete Beams Containing Recycled Coarse Aggregate (순환굵은골재를 사용한 철근콘크리트 보의 휨강도)

  • Yang, In-Hwan;An, Seul-Ki;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • This paper concerns flexural strength of reinforced concrete beams containing recycled coarse aggregate (RCA) with compressive strength ranging from 31 to 38 MPa. The experimental parameters were replacement ratio of RCA and rebar ratio. Replacement ratio of RCA was 0, 30, 50 and 100%, and rebar ratio was 0.50, 0.79 and 1.14%. The RCA concrete beams were tested by using four-point bending test, and experimental results were discussed regarding crack and failure patterns, load-deflection relationship. Crack pattern of concrete beams with RCA was similar to that of concrete beams with natural coarse aggregate (NCA) but overall crack spacing of concrete beams with RCA was smaller than that of concrete beams with NCA. The crack width of RCA and NCA concrete beams was similar to each other. In addition, the test results of flexural strength were compared to the design code predictions. The design code predictions for flexural strength underestimated the experimental results. Therefore, the design code predictions for flexural strength of RCA concrete beams would offer conservative design.

A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator (원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구)

  • 이병일;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

Experimental Evaluation for Static Performance of I-Beam Concrete Slab System (I 형강 합성바닥판의 정적성능 평가)

  • 정영수;박창규;김용곤;이원표
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.430-437
    • /
    • 2001
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. It is in particular known that due to repeated overburden vehicles, there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge superstructure, which can contribute to minimize a traffic congestion during repair and rehabilitation works of aged concrete slab, and can sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, can be manufactured in accordance with the specification in the factory, and be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate mechanical properties of I-beam with punch holes itself, and then to investigate structural properties of assembled I-beam panels through static test, of which result can be utilized for the development of the new constructional method for concrete slab in bridge superstructure.

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Investigation of Minimum Number of Drop Levels and Test Points for FWD Network-Level Testing Protocol in Iowa Department of Transportation (아이오와 주 교통국의 FWD 네트워크 레벨 조사 프로토콜을 위한 최소 하중 재하 수와 조사지점 수의 결정)

  • Kim, Yong-Joo;Lee, Ho-Sin(David);Omundson, Jason S.
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 2010
  • In 2007, Iowa department of transportation (DOT) initiated to run the falling weight deflectometer (FWD) network-level testing along Iowa highway and road systems and to build a comprehensive database of deflection data and subsequent structural analysis, which are used for detecting pavement structure failure, estimating expected life, and calculating overlay requirements over a desired design life. Iowa's current FWD networklevel testing protocol requires that pavements are tested at three-drop level with 8-deflection basin collected at each drop level. The test point is determined by the length of the tested pavement section. However, the current FWD network-level program could cover about 20% of Iowa's highway and road systems annually. Therefore, the current FWD network-level test protocol should be simplified to test more than 20% of Iowa's highway and road systems for the network-level test annually. The main objective of this research is to investigate if the minimum number of drop levels and test points could be reduced to increase the testing production rate and reduce the cost of testing and traffic control without sacrificing the quality of the FWD data. Based upon the limited FWD network-level test data of eighty-three composite pavement sections, there was no significant difference between the mean values of three different response parameters when the number of drop levels and test points were reduced from the current FWD network-level testing protocol. As a result, the production rate of FWD tests would increase and the cost of testing and traffic control would be decreased without sacrificing the quality of the FWD data.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.