• Title/Summary/Keyword: 재질 시험

Search Result 447, Processing Time 0.023 seconds

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave (유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지)

  • Joo, Young-Sang;Lee, Hyeong-Yeon;Kim, Jong-Bum;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • The thermal ratcheting deformation at the reactor baffle and upper internal structure of the liquid metal reactor (LMR) can occur due to movement of the hot sodium free surface. In in-service inspection of reactor internals of LMR, a new inspection technique should be developed for the detection of the thermal ratcheting damage. In this study, an inspection technique using ultrasonic guided wave is proposed for the detection of the thermal ratcheting damage of cylindrical vessels. A 316L stainless steel cylindrical shell specimen has been prepared. The thermal ratchet structural tests were cyclically performed by heat-up up to $550^{\circ}C$ with steep temperature gradients along the axial direction after cool-down by cooling water. Ultrasonic guided wave propagation has been characterized by analysis of dispersion curve of the stainless steel plate. The zero-order antisymmetric $A_0$ guided wave has been selected as the optimal mode for detection of the ratcheting deformation. It is confirmed that the thermal ratcheting deformation can be detected by the measurement of transit time difference of circumferentially propagated $A_0$ guided waves.

A Study on Performance Improvement of Fruit Vegetables Automatic Grafting System (과채류 접목시스템 개선 연구)

  • Kang, Dong Hyeon;Lee, Si Young;Kim, Jong Koo;Park, Min Jung;Son, Jin Kwan;Yun, Sung-Wook;An, Se Woong;Jung, In Kyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.215-220
    • /
    • 2017
  • This study was conducted to improve the insufficiency of fruit vegetable grafting system developed by National Institute of Agricultural Sciences, Rural Development Administration. When the rotary blade cut the stem of scions and rootstocks, the grafting failure at curved cutting surfaces happened. The cutting depth of a tomato seedling by a rotated cutter was calculated 0.11 mm even when the cutting arm length and the maximum stem diameter were 50 mm and 5 mm, respectively. Mathematical analysis and high-speed photography showed that there was no problem by cutting in straight the stem of scions and rootstocks. The compression test of seedling stems to design the optimal shape of gripper showed that stems were not completely restored when they were compressed above 0.8 mm and 0.6 mm in case of rootstocks and scion, respectively. This study found that the bending angle of stem of tomato seedlings at the grafting period was 10 degree on average. The optimal gripper finger was the edge finger type which could be precisely set center point by adjusting the distance between fingers. In addition, it was found that most of seedling could be grasped without damage when the finger-to-finger distances is set to 2.5 mm for scion and 3.0 mm for rootstocks and finger are coated by 1 mm-thick flexible material.

Evaluation of the Mechanical Characteristics According to the Curvature of Thermal Barrier Coating (가스터빈 블레이드 열차폐코팅의 곡률에 따른 기계적 특성 평가)

  • Lee, Jeng-Min;Seok, Chang-Sung;Koo, Jae-Mean;Kim, Sung Hyuk;Zhen, Guo;Tao, Shen;Moon, Wonki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1427-1430
    • /
    • 2014
  • A thermal barrier coating (TBC) prevents heat directly transferring from a high-temperature flame to a substrate. The TBC system comprises a top coating and bond coating. TBC technology reduces the substrate surface temperature by about $100{\sim}170^{\circ}C$. In the TBC system, internal stress is generated by the difference in thermal expansion coefficients of the substrate and coating. The internal stress also differs according to the shape and position of the blade. In this study, finite element analysis was performed for different curvatures of coin-shaped specimens, which are commonly used for thermal fatigue tests, and the changes in internal stress of the TBC system were compared. Based on the results, the curvature at which the minimum stress occurs was derived, and the thermal stress was confirmed to increase with the difference between a given curvature and the curvature with the minimum stress.

Studies on the Substance of Migration for Retort Pouch Packaging Materials for Various Condition (레토르트 파우치 포장재의 사용조건에 따른 이행물질의 조사)

  • Lee, Man-Sul;Song, Beum-Ho;Park, Sun-O;Lee, Bu-Young;Lee, Young-Za;Youn, Hey-Kyung;Eum, Mi-Ok;Seung, Ju-Heung;Jeun, Dae-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.3_4
    • /
    • pp.107-112
    • /
    • 2007
  • The effect of microwave heat to retort pouches and microwavable packages was examined. 186 products were collected, but packages were consisted of five package materials such as PET, Aluminum foil, Nylon, EVOH, and polypropylene. The results showed that all packages did not exceed the limits of current packaging regulation on consumption weight of $KMnO_4$, TDI(Toluene diisocyanate), and Caprolactam. Safety control on heat resistant packages considered satisfactory, but investigation on new substances should be continued for preventing any possible migration problems of packaged foods.

  • PDF

Effect of Process Parameters on Quality in Joint for Al/Steel Joining a MPW (전자기 펄스 용접을 이용한 Al/Steel 접합시 접합부 품질에 미치는 공정변수 영향)

  • Shim, Ji-Yeon;Kang, Bong-Yong;Kim, Ill-Soo;Park, Dong-Hwan;Kim, In-Ju;Lee, Kwang-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.27-27
    • /
    • 2009
  • 드라이브 샤프트는 일반적으로 엔진에서 발생된 회전력을 바퀴에 직접 전달하는 동시에 조향기능을 수행하는 자동차 부품이다. 최근에 경량화를 통한 에너지 절감을 위하여 기존 스틸소재를 알루미늄으로 대체하는 방안에 대한 연구가 집중되고 있다. 그러나 알루미늄 단일소재로 드라이브 샤프트를 제조하는 것은 비경제적이며 또한 기 개발된 자동차 부품들과의 연결을 고려하여 알루미늄 튜브와 스틸 요크의 이종금속 접합기술이 요구된다. 전자기 펄스용접은 전자기력을 이용하여 용접대상물을 고속으로 충돌시켜 용접하는 기술로서 열 발생이 적어 재료의 특성차로 인한 결함 및 변형이 발생하지 않아, 이종금속간 고품질 용접이 가능하며, 전자기 펄스 용접부의 품질과 밀접한 관계를 갖는 공정변수 경우 모재와 접합재의 재질 따라 적정 공정변수 범위가 변화되므로 공정에 따른 데이터의 축적은 대단히 중요하다. 전자기 펄스 용접을 이용한 이종금속 접합시 접합부 품질에 영향을 미치는 공정변수는 충전전압, 모재와 접합재 사이의 간격 및 접합재의 직경과 두께의 비(D/T비)로서 보고되었으며, Al/Steel 이종 금속 접합시 이들 공정변수가 접합부에 미치는 영향 및 최적의 공정변수 도출을 위한 연구는 시도되지 않았다. 따라서 본 연구는 전자기 펄스 용접기술을 이용한 Al/Steel 이종금속 접합 실험을 통하여 전자기 펄스용접의 적정성과 최적의 충전전압, 모재와 접합재 사이의 간격, D/T비를 도출하고자 한다. 전자기 펄스 용접 장치는 한국생산기술연구원과 웰메이트(주)에서 공동으로 개발한 $120{\mu}F$의 캐패시터 6개로 구성된 'W-MPW36'을 사용하였으며 이 장치의 최대충전전압과 최대접합용량은 각각 10kV, 36kJ이다. 접합재는 전기 전도율의 높은 Al 1070 파이프를 사용하였으며 모재는 기존 스틸 요크재인 SM45C 환봉을 사용하였다. 기보고된 연구를 통하여 코일과 접합재 사이의 간격이 좁을수록 높은 전자기력이 접합재에 작용하는 것을 확인하였으나 코일내 접합재와 모재 삽입 편의를 위하여 1mm로 설정하였다. 접합부의 품질 평가를 위하여 수압시험을 실시하였으며, 시험 후 접합부 단면을 주사전자현미경(SEM)을 이용하여 관찰하였다.

  • PDF

Mechanical Properties of Thermally Compressed Domestic Softwoods (국내산 침엽수 열압밀화재의 역학적 특성)

  • Hwang, Sung-Wook;Cho, Beom-Geun;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.666-674
    • /
    • 2014
  • In this study, we investigated mechanical properties of Korean softwoods after applying thermal compression. Density of compressed woods was notably increased with thermal compression. In case of 50% compression set, density of Korean pine (Pinus koraiensis), Japanese red pine (P. densiflora), and Larch (Larix kaempferi) wood was increased by 71%, 74%, and 76%, respectively, when compared to the control group. The strength of woods was increased and quality of the woods became homogeneous with an increases in the compression set. On the 50% compression set, the compressive strength, bending strength, and hardness of Korean pine wood was increased by 76%, 83%, and 55%, respectively compared to the control group. Longitudinal compressive strengths of Japanese red pine wood increased by 69%, 130%, and 76%, respectively and those of Larch wood increased by 77%, 120%, and 44%, respectively. In thermal compression wood, mechanical properties of Larch wood was the highest, while those of Korean pine wood were the lowest. However, Japanese red pine wood showed the highest in the increase rate of mechanical properties after the thermal compression.

A Study on the contamination measurement of spacecraft components under High Vacuum Environment (고진공하에서의 위성체 부품의 오염측정에 관한 연구)

  • 이상훈;서희준;문귀원;최석원
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.87-96
    • /
    • 2002
  • Outgassing from such sources as paints, coatings, adhesives and other non-metallic surfaces can contaminate satellites, especially second surface mirror and optical lens, it cause satellite to fail in own missions. The vacuum bake-out test using high temperature(more than $85 ^{\circ}C$)and high vacuum(less than $5.0{\times}1-^{-3}$ Pa) certify that the components of satellite work properly and can survive and operate in space environment like high vacuum. In the bake-out chamber installed at SITC of KARI, Rotary vacuum pump and Booster pump produce low vacuum of 5.0 Pa, and then two cryopumps produce high vacuum of below $5.0{\times}10^{-3}$ Pa. Also 48 ceramic heaters were provided to simulate high temperature. During the vacuum bake-out test, we detected contaminants using RGA(Residual Gas Analyzer) and measure the outgassing rate of the contaminant using the TQCM(Thermoelectric Quartz Crystal Microbalance). Also, IR/UV Spectrometer and witness plate be used to certify that the components were suitable for the spacecraft. This paper includes the preparation and procedures of the bake-out test for SAR(Solar Array Regulator) and MLI(Multi Layer Insulator), which were the components of the spacecraft. Especially, we discussed the methods and results of the contamination measurement. In the bake-out for SAR, the contamination was measured continuously although it was on the decrease from TQCM results. And RCA established that it is a highly polymerized compound. In the MLI bake-out using RGA and witness plate, we didn't detect any contamination materials.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.