• Title/Summary/Keyword: 재조합 세균

Search Result 75, Processing Time 0.022 seconds

Cloning and Structural Analysis of bfmo Operon in Methylophaga aminosulfidovorans SK1 (Methylophaga aminosulfidovorans SKI bfmo 오페론의 클로닝 및 구조 분석)

  • Lim Hyun Sook;Goo Jae Whan;Kim Lee Hyun;Kim Si Wouk;Cho Eun Hee
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Methylophaga aminosulfidovorans SK1 (KCTC 10323 BP) can utilize trimethylamine as a sole carbon, nitrogen, and energy source. The bacterial flavin-containing monooxygenase (bFMO) gene was identified in the strain and the recombinant enzyme expressed in E. coli oxidized trimethylamine. To study the function and regulation of the bfmo, over 8,000 nucleotide sequences of the neighboring regions including the bfmo were determined. Three open reading frames proceeding to the bfmo gene encoded analogues to highly conserved nitrate/nitrite sensing two-component system regulators and a methyl accepting protein. Two small open reading frames just downstream of the bfmo gene showed no similar proteins of known functions but the sequences were conserved among other bacteria. Reverse transcription-polymerase chain reaction analysis showed that the six putative genes consisted of three transcription units. The three regulatory genes located upstream of the bfmo gene formed two separate transcription units. The bfmo and the two downstream genes were transcribed from a single promoter.

Construction of a Transgenic Tobacco Expressing a Polydnaviral Cystatin (폴리드나바이러스 유래 시스타틴 유전자 발현 형질전환 담배 제작)

  • Kim, Yeongtae;Kim, Eunsung;Park, Youngjin;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.54 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • CpBV (Cotesia plutellae bracovirus) is a polydnavirus and encodes a cystatin (CpBV-CST1) gene. Its overexpression suppresses insect immunity and alters insect developmental processes. This study aimed to construct a genetically modified (GM) tobacco to further explore the physiological function of the viral cystatin and to apply to control insect pests. To this end, the transgenic tobacco lines were screened in expression of the target gene and assessed in insecticidal activity. A recombinant vector (pBI121-CST) was prepared and used to transform a bacterium, Agrobacterium tumefasciens. The transformed bacteria were used to generate transgenic tobacco lines, which were induced to grow callus and resulted in about 92% of shoot regeneration. The regenerated plants were screened by PCR analysis to confirm the insertion of the target gene in the plant genome. In addition, the expression of the target gene was assessed in the regenerated plants by quantitative real-time PCR (qRT-PCR). The qRT-PCR analysis showed that the transgenic line plant expressed the target gene about 17 times more than the control tobacco, indicating a stable insertion and expression of the target gene in the transgenic tobacco line. The insecticidal activity was then analyzed using the screened transgenic tobacco lines against the teneral 1st instar larvae of the oriental tobacco budworm, Helicoverpa assulta. Though there was a variation in the insecticidal efficacy among transgenic lines, T9 and T12 lines exhibited more than 95% mortality at 7 days after feeding treatment. These results suggest that CpBV-CST1 is a useful genetic resource to be used to generate GM crop against insect pests.

Astaxanthin Biosynthesis in Transgenic Arabidopsis by Using Chyb Gene Encoding β-Carotene Hydroxylase (β-Carotene Hydroxylase 관련 Chyb 유전자를 이용한 형질전환 Arabidopsis에서 Astaxanthin의 생합성)

  • Lee, Ho-Jae;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.231-237
    • /
    • 2004
  • Oxycarotenoids are oxygenated carotenoids that perform critical roles in plants. $\beta$-Carotene hydroxylase adds hydroxyl groups to the $\beta$-rings of carotenes and has been cloned from several bacteria and plants including Arabidopsis. This study was carried out to investigate the effect of $\beta$-carotene hydroxylase gene (Chyb) on the oxycarotenoids biosynthesis in the transgenic Arabidopsis. Construct of pGCHYB containing Chyb was established onto Gateway vector system (pENTR3C gateway vector and pH2GW7 destination vector). Arabidopsis thaliana (cv. Columbia) was transformed with Agrobacterium tumerfacience GV3101 harboring pGCHYB construct driven by 35S promoter and hygromycin resistant gene. Seven hundred bases paired PCR products, indicating the presence of Chyb gene, were found in the transformants by PCR analysis using Chyb primers. Hygromycin resistance assay showed that transgenes were stably inherited to next generation. The overexpression of the Chyb gene resulted in the decrease carotenoid content. Especially, astaxanthin unusual oxycarotenoid in wild type Arabidopsis was detected in the transgenic plants. This means that decreased carotenoids might be converted into astaxanthin metabolism with the aid of silent gene in the host.

NMR Spectroscopy and Mass Spectrometry of 1, 2-Hexanediol Galactoside synthesized using Escherichia coli β-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 1, 2-Hexanediol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Kim, Yi-Ok;Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.286-292
    • /
    • 2016
  • 1, 2-Hexanediol galactoside (HD-gal) has been synthesized from 1, 2-hexanediol (HD), a cosmetic preservative, using recombinant Escherichia coli ${\beta}$-galactosidase (${\beta}$-gal) at the high lactose concentration (300 g/l). To confirm the molecular structure of synthesized HD-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of HD-gal were conducted. $^1H$ NMR spectrum of HD-gal showed multiple peaks corresponding to the galactocyl group, which is an evidence of galactocylation on HD. Downfield proton peaks at ${\delta}_H$ 4.44 ppm and multiple peaks from ${\delta}_H$3.96~3.58 ppm were indicative of galactocylation on HD. Up field proton peaks at ${\delta}_H$ 1.60~1.35 ppm and 0.92 ppm showed the presence of $CH_2$ and $CH_3$ protons of HD. $^{13}C$ NMR spectrum revealed the presence of 21 carbons suggestive of ${\alpha}$- and ${\beta}$-anomers of HD-gal. Among 12 carbon peaks from each anomers, the 3 peaks at dC 68.6, 60.9 and 13.2 ppm were assigned to be overlapped showing only 21 peaks out of total 24 peaks. The mass value (protonated HD-gal, m/z = 281.1601) from mass spectrometry analysis of HD-gal, and $^1H$ and $^{13}C$ NMR spectral data were in well agreement with the expecting structure of HD-gal. For further study, the minimum inhibitory concentrations (MICs) of HD-gal against bacteria will be investigated, and, in addition, cytotoxicity to human skin cells of HD-gal will be examined. It is expected that it will eventually be able to develop a new cosmetic preservative, which have low cytotoxicity against human skin cell and maintains antimicrobial effect.

Analysis of the Role of RGG box of human hnRNP A1 protein (인간 hnRNP A1 단백질에 포함된 RGG 상자의 기능 분석)

  • Choi, Mieyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.575-580
    • /
    • 2017
  • This study analyzed the effects of RGG box of hnRNP A1 on its subcellular localization and stabilization of hnRNP A1 over a three year period from October 2014. First, a 6R/K mutation in RGG box was generated, and pcDNA1-HA-hnRNP A1(6R/K) was constructed. The subcellular localization of hnRNP A1(6R/K) from the HeLa cells transfected with this plasmid DNA was analyzed by immunofluorescence microscopy. HA-hnRNP A1(6R/K) was found to exhibit nuclear and cytoplasmic fluorescence. The stability of hnRNP A1(6R/K) was checked by Western blot analysis using the expressed protein from the HeLa cells transfected with the pcDNA1-HA-hnRNP A1(6R/K). The results show that HA-hnRNP A1(6R/K) has a smaller size. These confirm that HA-hnRNP A1(6R/K) is localized both in the nuclear and cytoplasm, not because 6R/K mutation affects the nuclear localization of hnRNP A1, but because 6R/K mutation causes hnRNP A1(6R/K) to cleave at the mutation or near the mutation site. The cleaved protein fragment, which lacks the M9 domain (i.e. nuclear localization signal of hnRNP A1), did not exhibit nuclear fluorescence. This suggests that the arginines of RGG box in hnRNP A1 play an important role in stabilizing hnRNP A1. An analysis of the RNA-binding ability of hnRNP A1(6R/K) expressed and purified from bacteria will be a subsequent research project.