• Title/Summary/Keyword: 재조합방법

Search Result 197, Processing Time 0.028 seconds

Cloning and Characterization of a Cellulase Gene from a Plant Growth Promoting Rhizobacterium, Bacillus subtilis AH18 against Phytophthora Blight Disease in Red-Pepper (고추역병을 방제하는 PGPR균주 Bacillus subtilis AH18의 항진균성 Cellulase 유전자의 Cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Jung, Hee-Kyoung;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Using PCR amplification, we cloned a cellulase gene (ce/H) from the Bacillus subtilis AH18 which has plant growth-promoting activity and antagonistic ability against pepper blight caused by Phytophthora capsici. The 1.6 kb PCR fragment contained the full sequence of the cellulase gene and the 1,582 bp gene deduced a 508 amino acid sequence. Similarity search in protein database revealed that the cellulase of B. subtilis AH18 was more than 98% homologous in the amino acid sequence to those of several major Bacillus spp. The ce/H was expressed in E. coli under an IPTG inducible lac promoter on the vector, had apparent molecular weight of about 55 kDa upon CMC-SDS-PAGE analysis. Partially purified cellulase had not only cellulolytic activity toward carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as Avicel and filter paper (Whatman No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. The optimum pH and temperature of the ce/H coded cellulase were determined to be pH 5.0 and $50^{\circ}C$. The enzyme activity was activated by $AgNO_3$ or $CoCl_2$. However its activity was Inhibited by $HgC1_2$. The enzyme activity was activated by hydroxy urea or sodium azide and inhibited by CDTA or EDTA. The results indicate that the cellulase gene, ce/H is an antifungal mechanism of B. subtilis AH18 against phytophthora blight disease in red-pepper.

In vitro Digestibility Assessment of CP4EPSPS in GM Soybean under Different Conditions of Simulated Gastric Fluid and Preheating (인공위액조건과 예열처리에 따른 GM 콩 도입단백질(CP4EPSPS)의 소화성 평가)

  • Choi, Mi-Hee;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1310-1314
    • /
    • 2012
  • Gastrointestinal digestibility of new proteins inserted in the food supply is a significant parameter for assessing the safety of GM foods based on the assumption that digestive stability is undesirable. In this study, we performed in vitro digestion of CP4EPSPS, a new protein, expressed in genetically modified (GM) soybean in order to evaluate its digestibility in three different ratios of simulated gastric fluid with preheating. Ratios of GM soybean to simulated gastric fluid were 2:2, 2.5:1.5, and 1.5:2 and preheating was conducted at $100^{\circ}C$ for 5 min. Electrophoresis and Western blotting were used to confirm changes in soybean protein patterns and CP4EPSPS gene expression after in vitro digestion. At ratios in which the amount of gastric fluid was equal to (2:2) or relatively higher than that of soybean (1.5:2), no CP4EPSPS (47.4 kDa) protein was detected after 15 seconds of simulated gastric fluid incubation, the earliest time interval evaluated. However, when the ratio of GM soybean to gastric fluid was 2.5:1.5, CP4EPSPS was detected in 5 min and gradually decreased according to time. After preheating, no CP4EPSPS protein was detected after 15 seconds under all conditions. From these results, we concluded that the digestibility of CP4EPSPS in simulated gastric fluid increased upon preheating. Accordingly, we suggest that it is important to account for the ratio of gastric fluid to GM food in in vitro digestibility assessment models of GM food.

Monitoring of Structural Changes during in vitro Unfolding and Refolding of Recombinant Human Growth Hormone (재조함 인성장호르몬의 in vitro 풀림과 재접힘 과정의 구조변화 모니터링)

  • Cho, Tae-Hoon;Chai, Young-Kyu;Ahn, Sang-Jeom;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.651-654
    • /
    • 1999
  • Using recombinant human growth hormone as a model protein, we carried out unfolding by adding a denaturant such as urea, guanidine HCl, or SDS followed by refolding by dilution and dialysis. The objectives were to monitor the structural changes during in vitro refolding process and, based on the results, to develop a quantitative method of refolding progress assessment. The changes in surface hydrophobicity were measured by fluorescence tagging of 1-anilinonaphthalene-8-sulfonate(1,8-ANS) to the hydrophobic portions, and those in the secondary structure were monitored by using far UV-CD(circular dichroism) spectroscopy. Also, we used RP-HPLC to separate and quantify the folded and unfolded proteins to correlate the result with the structure analysis. Our results indicate the surface hydrophobicity are well correlated with the formations of the secondary structure, primarily ${\alpha}$-helices, as well as the disulfide bridges. We expect this monitoring technique can be applied in industrial fields as a means to quantitatively assess the progress of in-vitro refolding of recombinant proteins.

  • PDF

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig (α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포)

  • Kim, Ji Woo;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.59-67
    • /
    • 2015
  • Galactose-${\alpha}1,3$-galactose (${\alpha}1,3$-Gal) epitope is synthesized at a high concentration on the surface of pig cells by ${\alpha}1,3$-galactosyltransferase gene (GGTA1). The ${\alpha}1,3$-Gal is responsible for hyperacute rejection in pig-to-human xenotransplantation. The generation of transgenic pigs as organ donors for humans is necessary to eliminate the GGTA1 gene that synthesize $Gal{\alpha}$(1,3)Gal. To prevent hyperacute graft rejection in pig-to-human xenotransplantation, previously, we developed ${\alpha}1,3$-galactosyltransferase gene-knock-out somatic cell by homologous recombination. In this study, we established cell lines of ${\alpha}1,3$-GT knock-out expressing hDAF and hHT gene from minipig fibroblasts to apply somatic cell nuclear transfer. The hDAF and hHT mRNA were expressed in the knock-in somatic cells and ${\alpha}1,3$-GT mRNA was suppressed. However, the knock-in somatic cells were increased resistance to human serum-mediated cytolysis.

Overproduction and High Level Secretion of Glucose Oxidase in Saccharomyces cerevisiae (Glucose Oxidase의 Saccharomyces cerevisiae에서의 대량생산 및 고효율 분비)

  • 홍성용;최희경;이영호;백운화;정준기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The overproduction and high level secretion of Glucose Oxidase (GOD) from A. niger in S. cerevisiae was carried out by cloning GOD gene. For this purpose, using two different strong promoters (ADH1 promoter, GAL10 promoter) and signal sequences (${alpha}$-MF signal sequence of S. cerevisiae and ${alpha}$-amylase signal sequence of A. oryzae) and GAL7- and GOD terminator, four expression vectors were constructed. All the expression vectors were transformed in S. cerevisiae 2805 using auxotroph method. By the flask culture, transformants of pGAL expression vector series containing GAL 10 promotor showed much higher GOD productivity than transformants of pADH expression vector series containing ADH1 promoter Transformants of pGALGO2 containing GAL10 promotor and ${alpha}$-amylase signal sequence has shown the best productivity of GOD ($GOD_{total}$: 10.3 unit/mL, $GOD_{ex}$: 8.7 unit/mL) at 115 hr. This value was three fold higher than that of pGALGO1 containing GAL 10 promotor and ${alpha}$-MF signal sequence, even if the same promotor was involved. Through the ${alpha}$-amylase signal sequence of A. oryzae, GOD was secreted much more than the case of ${alpha}$-MF signal sequence from S. cerevisiae. These results suggest that signal sequence may play a important roles in not only the secretion but also the overproduction of foreign protein. Secretion rate of GOD in pGALGO1 and pGALGO2 was 89% and 84%, respectively, Because of the overglycosylation in S. cerevisiae the molecular weight of recombinant GOD in S. cerevisiae was much larger (250 kDa) than that of nature GOD in A. niger (170 kDa).

  • PDF

Development of Transgenic Carrot Oral Vaccine to Protect against Diarrhea of Piglets (자돈 설사병 방지를 위한 경구백신용 형질전환 당근 개발)

  • 이영선;황철호
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.287-293
    • /
    • 2002
  • We are trying to develop a transgenic carrot with aims of production and delivery of oral vaccine against microbial enteropathogen using a K88ac pilin gene. A K88ac antigen (pilin) gene was isolated by PCR from the K88ac genomic DNA. The pilin gene was constructed in pGA748 and introduced via Agrobacterium tumefaciens to the explants of carrot hypocotyl and then 494 transgenic lines were established. The amounts of the K88ac antigen produced in each of the cell lines were determined by western and two elite cell lines (M1-17, Y14-1) were selected based on higher levels of expression of the antigens as well as rate of cell growth and efficiency of embryogenesis. In order to test an immunization induced by oral administration of the transgenic carrot, serum of the mice fed with the carrot vaccine were tested in ELISA. It tumed out that the mice fed with 3 g of transgenic carrot showed a similar level of antibody compared to those applied with 10 $\mu\textrm{g}$ of the purified recombinant pilin protein. Besides, various clinical responses were measured after challenging with ETEC K88ac strain to the piglets experiencing an oral immunization with the transgenic carrot. The piglets fed with carrot vaccine showed a lower level of diarrhea in fecal score compared to those fed with non-transgenic carrot. A higher level of increase in weight of the piglets fed with the transgenic carrot vaccine was observed comparing to those fed with non-transgenic carrot as control.

A Case with Perinatal Hypophosphatasia Caused by the ALPL Mutations (ALPL 유전자의 돌연변이를 가진 양성 주산기 저인산증 1례)

  • Kim, Joonil;Kang, Eungu;Kim, Yoon-Myung;Lee, Beom Hee;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2016
  • Hypophosphatasia is caused by the mutations in ALPL, which encodes tissue-nonspecific alkaline phosphatase (TNSALP). It can be inherited either in an autosomal dominant or recessive manner. Clinically, hypophophosphatasia is characterized by skeletal findings similar to those in rickets or osteomalacia, but serum alkaline phosphatase levels are decreased in the affected patients. Hypophosphatasia can be classified into six clinical forms according to age at diagnosis and severity of symptoms: perinatal lethal, infantile, childhood, adult, odontohypophosphatasia, and perinatal benign. As being a very rare disease, only one case has been reported in Korean population. Here we describe a case with perinatal benign hypophosphatasia with recessive ALPL mutations. Bowing of lower legs was detected in prenatal period and low serum alkaline phosphatase level was noted after birth. During the follow-up evaluation for 4.5 years, bone mineralization and legs bowing were improved but the growth retardation was persistent. As the recombinant bone-targeted human TNSALP became available, the clinical improvement of the affected patients is expected including the case described here with this treatment. More efforts are needed to identify the cases affected by hypophosphatasia.

  • PDF

Nuclear Remodeling and In Vitro Development of Bovine Oocytes Following Nuclear Transfer of Bovine Fetal Fibroblasts (태아 섬유아세포로 핵치환된 소 난자의 핵의 재구성과정과 체외 배발달)

  • Um, J. H.;S. J. Uhm;Kim, N-H;Lee, H. T.;K. S. Chung
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.59-67
    • /
    • 2000
  • This study was investigated the developmental potential of bovine embryos following nuclear transfer with bovine fetal fibroblasts (BFF). BFF were isolated from a male 45-day-old-fetus. Non-starved BFF labeled with MitoTracker were transferred into perivitelline space of enucleated oocytes. BFF-oocyte units were fused by electric pulse, and then fused oocytes were activated with calcium ionophore A23187 and subsequently 6-dimethylaminopurine (6-DMAP). The resulting zygotes were placed into CRlaa bovine embryo culture medium. Transfer of the nucleus into enucleated oocyte led to premature chromosome condensation, swelling and pronucleus formation. Remodeled oocytes were developed to the mitotic and 2-cell stage at 18 to 26 h after nuclear transfer. The incidence of in vitro development to the blastocyst stages was 21% of fused oocytes. Mitochondria of BFF eliminated rapidly and were not detected at 8 h after fusion. These results suggest that BFF can be successfully reprogrammed in enucleated bovine oocytes, and that reconstructed embryos can develop to the blastocyst stage.

  • PDF

Production of Transgenic Orchardgrass Overexpressing a Thermotolerant Gene, DgP23 (내열성 유전자 DgP23을 도입한 형질전환 오차드그라스의 생산)

  • Kim Ki-Yong;Jang Yo-Soon;Park Geun Je;Choi Gi Jun;Seong Byung Ryul;Seo Sung;Cha Joon-Yung;Son Daeyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.267-274
    • /
    • 2005
  • To develop transgenic orchardgrass (Dactylis glomerata L.) resistant to high temperature, a thermptolerance gene, DgP23, was introduced into orchardgrass using Agrobacterium - mediated transformation method. PCR and Southern blot analyses using genomic DNA showed specific DNA band on agarose gel and hybridization signal on X- ray film in transgenic orchardgrass harboring the recombinant DgP23 gene, but not in the wild type and empty vector control plants. RT-PCR and Southern blot analyses using total RNA also showed specific DNA band and hybridization signal. Transgenic orchardgrass did not showed ny morphological aberration both in the green house and field cultivation. Thermotolerance of transgenic plants was not detected in laboratory test. but may detected in field test.