• Title/Summary/Keyword: 재자원화

Search Result 69, Processing Time 0.019 seconds

Investigation on Posssiblility of Composting by Properties Analysis of Organic Sludge Composts (각종 유기성오니의 성상분석에 의한 퇴비화가능성의 검토)

  • Han, E.J.;Choi, H.G.;Lee, J.A.;Kim, K.Y.;Lee, C.K.;Park, K.H.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.109-120
    • /
    • 2000
  • In the analysis of the common categories, moisture contents and organic concentrations were not much different according to the types of industry or treatment facilities. When heavy metals contribution of the sludge from domestic and industrial wastewater treatment facilities was analyzed, As, Hg and Cr concentrations were relatively high among 42 standards of the fertilizer law. As concentration war higher in 28 of 42 facilities (67%) than limits of the fertilizer law. Hg concentration was not acceptable in the 21 of 42 facilities (50%). Cr concentration was not acceptable in 9 of 42 facilities (21%). From these results, It is found that As is the most frequently detectable component and contaminant than any other heavy metals in sludges. The data from this experiment was also compared with the guidelines of harmful organics and the rest of heavy metals that are regulated by some of the foreign countries. Be, Se and Mo concentrations were lower than the limits. Among the organics, the average concentration of PCB (10 samples) was 26.2 ppb. The highest concentration was 162.6 ppb in the sludge of the municipal wastewater treatment facilities and the lowest concentration was 2.14 ppb from the skin manufacturing industry. From the leaching analysis of re-manufacturing goods from the sludge, most of them was acceptable on the regulation law but Cr concentration was over the limit.

  • PDF

Characteristic Evaluation of SCR catalyst using Aluminum dross (알루미늄 폐드로스를 활용한 SCR 탈질촉매 제조 및 특성평가)

  • Bae, Min A;Kim, Hong Dae;Lee, Man Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4672-4678
    • /
    • 2013
  • Aluminum dross is formation at the surface of the molten metal as the latter reacts with the furnace atmosphere and it was an unavoidable by-product of the aluminum production process. However aluminum dross was usually landfilled or disposed without treatment, causing much environmental damage. The purpose of this study is to investigate the possibility of ceramic catalyst support using recycled Al dross. The recycled Al dross was made into SCR catalyst by mixing with $WO_3$, $V_2O_5$ and $TiO_2$. The $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst was observed with XRF, XRD and BET. $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR strength was measured by Universal Testing Machine(UTM). As the added $Al_2O_3$, streagth is increased. And the NOx removal activity was observed by MR(Micro-Reactor). The temperatures ranging from $350^{\circ}C$ and $400^{\circ}C$, $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst De-NOx performance result of showed excellent activity over 90% at application condition.

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF

Geotechnical Characterization of Artificial Aggregate made from Recycled Resources of Gwangyang Bay Area as a Drainage Material (광양만권 순환자원으로 제조된 배수재용 인공골재의 지반공학적 특성)

  • Kim, Youngsang;Kim, Wonbong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of the industrial by-products has been an important issue of the Yeosu bay, where large industrial complex is located. Major industrial by-products which are produced from Yeosu industrial complex area are phosphogypsum and flyash, which are about 82% and 10% of the 1.6 million tons industrial by-products. Moreover since the Yeosu industrial complex is located at seaside, phosphogypsum has been pointed as cause of serious environmental contaminant from the regional society. Therefore recycling study can't be delayed anymore. In this paper, artificial aggregate was manufactured by non-sintering process from industrial byproducts - e.g., phosphogypsum and slag - as a geotechnical drainage material. To show the feasibility of the artificial aggregate as a geotechnical drainage material, geotechnical experiments including particle size analysis, permeability test, and large scale direct shear test were carried out. Test results show that the permeability of the artificial aggregates range from $6.94{\times}10^{-1}cm/sec$ to $8.86{\times}10^{-1}cm/sec$, which is much larger value than those are required for the drainage material from the construction specification in Korea, and the friction angle of the artificial aggregate is as large as that of sand in water immersion conditions. From the test results, it was concluded that artificial aggregate made from industrial by-products can be used successfully as a geotechnical drainage material.

Development for the Waste Plastics Process (폐플라스틱의 재활용 기술)

  • 여종기
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 1997
  • In recent yean thc problem of wastc plastics arc greatly incrcascd with ihe result uf lndushial growth. As a rcsult the amount of wastc plaslics in domestic area is appraxhnately 2,300,000 t<~nin 1996 base and contmuously increasing more than 12% cvcry ycar. Thc disposal way of these waste plastics arc dlLl malnly rely~ng on landill1 or partially incinuralion So that it hss become a senous social problem due to the second envirnmentd pollution. The tcchnologics iar prducing oil from the waste plastics have hccn dcvelopcd far along pennd and currently some of them are in a commercialiration stage Pyrolysis process in one of the major process m heating waslc plaslics bul still has some restlichons for the cammcrc~dizatian duc lo 11s emnom~cal problems assaciated with a systcmiltlc lecd collcctionidispnsJ ways. Cansldenng cnvaomcnld problems, thc inclease m the charge for waste matcds trcatmcnt and thc lmlitarion ni disposal area, it is inteicstcd that the wastc plastics treabncnt by pyrolysn. which would be the safest and the most eilic~ent process for cnnvcrting fecd wastc to rc-usablc rcsourccs. would he predomhant m ihe near h~lurc Thc shldy aims inr the development of haslc ted~nolagy for scaling up to a com~nercial sire through pyrolys~s process which is cnnduclcd under the absence of air. Furthern~orc the waste plastics can be recycled as iual gas or oil wilhout harmful effects in enviroment, The waste w e d plastics arc pyrolyzed in (he fluidized bcd rcaclor under continuous way and thc ail ylcld gives approx~marcly 47 4%.

  • PDF

Current Status of Pyrometallurgical Process for the Reclamation of Urban Ore (도시광석(都市鑛石) 재자원화(再資源化)를 위한 건식공정(乾式工程)의 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Shin, Do-Yeoun;Jeoung, Jin-Ki;Rhee, Kang-In;Sohn, Jeong-Soo;Yang, Dong-Hyo;Kim, Min-Seuk;Kim, Soo-Kyung
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.3-8
    • /
    • 2012
  • In the points of the environmental conservation and the recirculating utilization of limited resources, it is very important to recover valuable metals like Au, Ag, Pd, Cu, Sn, Ni, Co, and Li used as industrial raw materials from urban ores. From now, many processes have been developed for recovering the valuable metals contained in urban ores and some of them have been operated commercially. In the paper, pyrometallurgical processes developed for reclaiming valuable metals from urban ores will be briefly introduced.

Study on the Recovery of Metallic Aluminum in Black Dross generated from the Used Beverage Cans (UBC) Recycling Process with Crushing Mechanism (파쇄 기구에 따른 알루미늄 캔 재자원화 공정 중 발생한 블랙 드로스 내 알루미늄 회수에 관한 연구)

  • Han, Chulwoong;Son, Seong Ho;Ahn, Byung-Doo;Kim, Dae-Guen;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.71-78
    • /
    • 2017
  • This study investigated the recovery of metallic aluminium in the black dross generated from used beverage can recycling process with crushing mechanism such as compression and impact. The as-received Al black dross had a spherical shape, and its size was about 10~40 mm. Also, The X-ray diffraction pattern showed that the main contents of black dross are composed of halite (NaCl), sylvite (KCl), spinel ($MgAl_2O_4$) and corundum ($Al_2O_3$). A metallic aluminium recovery test was performed using jaw crusher and hammer mill having different crushing mechanism. It was analysed that Jaw crushing process can separate into metallic aluminium and non metallic constituents. However, hammer milling process shows significant difference on the separation results. It was found that jaw crushing process was effective for recovery of metallic aluminium in the black dross than that of hammer milling process.

Effect of Heating Temperature and Time of Coffee Waste on The Adsorptivity of Formaldehyde (폼알데하이드 흡착능에 대한 커피부산물의 열처리 조건 영향)

  • Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2015
  • This study was conducted to examine the potential use of coffee waste (CW) as an adsorbent of HCHO by adding into fiberboard. For the purpose, CW treated with various temperatures and times was placed in desiccator with a HCHO solution and then the HCHO adsorptivity of the CW was measured by acetylacetone (ATAN) and DNPH methods. In the results of ATAN analysis, amount of HCHO adsorbed in distilled water was the lowest on the non-treated CW and steadily increased to $100^{\circ}C$-treated temperature. However, over the $100^{\circ}C$, heating temperature (H-Temp) had not an effect on the HCHO adsorptivity of CW. Amount of HCHO adsorbed on CW itself was the highest at $100^{\circ}C$ H-Temp, following by $50^{\circ}C$, $150^{\circ}C$, $0^{\circ}C$, $250^{\circ}C$ and $200^{\circ}C$. For the HCHO adsorptivity of CW measured by DNPH methods, HCHO was not detected in the distilled water stirred with non-treated CW, but detected from the distilled water stirred with heating-treated CW. The content was the highest in the CW heating-treated at $100^{\circ}C$ for 10 min. In addition, HCHO adsorbed on CW itself increased to the H-Temp of $100^{\circ}C$ regardless of heating time, but decreased or reduced greatly degree of the increase over $100^{\circ}C$ H-Temp. In conclusion, optimal heating conditions of CW for the HCHO adsorption might be H-Temp between 100 and $150^{\circ}C$ with 10 min according as technical and economical reasons. Heating-treated CW manufactured with above the conditions can be used as an adsorbent in conventional fiberboard production for reducing HCHO emssion.

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model (0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구)

  • Eunji Lee;Won Yang;Uendo Lee;Youngjae Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.