• Title/Summary/Keyword: 재생활성탄

Search Result 20, Processing Time 0.023 seconds

Regeneration Characteristics of Adsorbent Loaded with VOCs using Supercritical Carbon Dioxide (휘발성 유기용제가 흡착된 흡착제의 초임계 이산화탄소를 이용한 재생특성)

  • Lee, Seung Bum;Seong, Dae Hyung;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.737-741
    • /
    • 1997
  • The typical removal method of volatile organic compounds is adsorption process. In this study, granular activated carbon and activated carbon fiber were used as adsorbents, and the adsorption behavior for the two types of adsorbent was compared. And they were regenerated by supercritical carbon dioxide extraction at a constant temperature, 318.15 K, and 2000, 2500, 3000 psi respectively. The desorption percentage of initial adsorbates and iodine values were increased with pressure of supercritical carbon dioxide. The regeneration time was 70 and 60 minutes in adsorbents loaded with methyl ethyl ketone(MEK) and benzene, respectively. The desorption percentages were 64.0% for granular activated carbon and 55.3% for activated carbon fiber loaded with MEK, and 59.1% for granular activated carbon and 45.2% for activated carbon fiber loaded with benzene. The exit concentration could be evaluated by Tan and Liou model. Therefore, the granular activated carbon and the activated carbon fiber could be regenerated by supercritical fluid extraction process.

  • PDF

Comparison of Bacterial Regrowth on Plant- and Coal-based Granular Activated Carbon (식물계활성탄과 석탄계활성탄에서의 세균재생장 비교)

  • 이동근;박성주;하배진;하종명;이상현;이재화
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • Activated carbon has been used in water treatment, because they strongly adsorb organic material including contaminant. Water purifier usually use activated carbon, and bacterial regrowth on that could induce many problems. Model columns, packed with coal- and plant-based granular activated carbon (GAC), were operated with rechlorinated tap water to compare the degree of bacterial regrowth on different GACs. GAC columns decreased the concentration of total organic carbon and chlorine, while they are not good for the decrease of ions. Breakthrough of bacteria were occurred after eight days of operation, and reached 1.1 ${\times}$ 10$^3$ CFU/mL on coal based GAC and 6.2 ${\times}$ 10$^2$ CFU/mL on coconut based one. Bacterial activities on GAC were between 15.35 ∼ 29.06 $\mu\textrm{g}$ INT-formazan/g-GAC/h. Bacterial concentration and activities were higher in coal based GAC than coconut based one. Bacterial regrowth on GAC was clarified and regrowth effect of coal-based GAC was higher than that of coconut-based one.

전자파를 이용한 톨루엔의 흡착회수에 관한 연구

  • Do, Sang-Hyeon;Kim, Yun-Gap;Kim, Jeong-Bae;Choe, Seong-U
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.34-36
    • /
    • 2007
  • 마이크로파를 이용하여 활성탄의 재생과 톨루엔의 흡착회수에 관한 연구를 실행하였다. 마이크로파에 의하여 흡착된 활성탄의 톨루엔의 탈착온도를 얻었을 수 있었으며, 흡착제의 방전 문제를 극복할 수 있는 벤토나이트 광물을 이용한 구형활성탄을 제조하였다. 마이크로파를 이용하여 흡착제에 흡착되어진 톨루엔을 탈착하여 흡착제를 재생하였으며, 냉각 응축 장치를 이용하여 톨루엔을 회수하였다.

  • PDF

Biological Activated Carbon (BAC) Process in Water Treatment (정수처리에서의 생물활성탄 공정)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Roh, Jae-Soon;Yoo, Pyong-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.308-323
    • /
    • 2009
  • This review paper serves to describe the composition and activity of biological activated carbon (BAC) biofilm which is considered as a progressive process for water treatment. As well as several physical-chemical, biochemical and microbiological analysis methods for characterizing the composition and activity of BAC biofilm, the ability of the biofilm to remove and biodegrade organic matters and pollutants related to other water treatment processes such as pre-ozonation will be reviewed. In this paper, conversion of GAC into BAC, removal mechanism of pollutants, characteristics and affecting factors of BAC biofilm, and modeling of BAC are described in detail. In addition, strategies to control the growth of the BAC biofilm, such as varying the nutrient loading rate, altering the frequency of BAC filter backwashing and applying oxidative disinfection, will be dwelled on related to their respective process control challenges.

Effect of Bioregeneration for Temperature Variation by Biological Activated Carbon (온도변화에 따른 생물활성탄의 생물학적 재생에 미치는 영향)

  • Ryu, Seong Ho;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.71-79
    • /
    • 1997
  • Biological Activated Carbon (BAC) process is widely used for the advanced water treatment, but it's mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption. Also the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. Therefore, the objectives of this study examines closely the mechanism of bioregeneration by temperature variation, especially low temperature.

  • PDF

Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation (가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술)

  • Joo, Soobin;Lee, Sangmin;Kim, Hyungjun;Shim, Intae;Kim, Heejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2023
  • As an adsorption technology for dissolved organic matter, the adsorption capacity of granular activated carbon, GAC, can be applied, but activated carbon whose adsorption capacity is significantly reduced by use is inevitably replaced or regenerated. However, due to the economics of replacement cost, thermal regeneration method is used commercially, but high energy cost and loss of activated carbon occur under high temperature conditions above 800℃. In this study, the Sono-Fenton method, a multi-oxidation technology that combines Fenton oxidation and ultrasonic oxidation, was applied to improve the regeneration efficiency of spent GAC used to treat dissolved organic matter in combined sewer overflows (CSOs), and the regeneration efficiency of spent GAC by oxidant and ultrasonic frequency was investigated. In the applied Sono-Fenton treatment, the highest regeneration efficiency of 68.5% was obtained under the regeneration conditions of Fe2+ 10 mmol/L, H2O2 concentration 1,000 mmol/L, ultrasonic treatment time of 120 min, and ultrasonic frequency of 40 kHz. And similar efficiency was also obtained at 750 kHz, while ultrasonic waves of other frequencies had poor regeneration efficiency, and the magnitude of frequency and GAC regeneration efficiency did not show a linear relationship. In the case of continuous operation of the GAC adsorption tower with CSOs prepared by diluting raw sewage, about 700 hours of operation without regeneration was possible, and as a result of applying one Sono-Fenton treatment, 40-70% CODcr removal efficiency was obtained during a total of 1,000 hours of GAC adsorption operation.

Cr(VI) Removal from Artificial Groundwater by Granular Activated Carbon and Regeneration of the Spent Carbon (입상활성탄을 이용한 인공 조제 지하수내의 Cr(VI) 제거와 그 활성탄의 재생)

  • Ihnsup Han
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.11-31
    • /
    • 1999
  • Removal of hexavalent chromium from artificial groundwater (AGW) by granular activated carbon (GAC) was investigated in batch and continuous-flow column studies. Experimental parameters that were examined included solution pH, presence of dissolved oxygen (DO), and GAC pretreatment with Fe(II). As the solution pH increased from 4 to 7.5, the amount of Cr(VI) removed by both GACs decreased significantly. Exclusion of DO from the experimental systems resulted in greater removal of Cr(VI) from solution, possibly as a result of reduction to Cr(III). However, pretreatment of the GAC with a reductant (Fe(II)) did not improve Cr(VI) removal. Equilibration With 0.01 M $K_2$$HPO_4$[to extract adsorbed Cr(VI)] followed by a wash with 0.02 N $K_2$$HPO_4$[to remove precipitated/sorbed Cr(III)] proved to be a viable approach for the regeneration of carbons whose Cr(VI) removal capacities had been exhausted. The performance of the regenerated carbons exceeded that of the virgin carbons, primarily because of the favorable adsorption of Cr(VI) at lower pH values and the reduction of Cr(VI) to Cr(III), The presence of Cr(III) in acid wash solutions provides direct evidence that Cr(VI) is reduced to Cr(III) in GAC systems under relatively acidic conditions. GAC performance over five complete cycles was consistently high, which suggests that such a system will be able to function over many operation cycles without deleterious effects.

  • PDF

Effect of Reactivation of Activated Carbon on Adsorption of Natural Organic Matter (활성탄 재생이 자연유기물질의 흡착에 미치는 영향)

  • Hong, Seongho;Choi, Jusol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.323-329
    • /
    • 2007
  • There is no certain definition about advanced drinking water treatment but it is generally known as activated carbon process, membrane process or ozone process which can remove non-conventional pollutants such as taste and odor compounds, and micro-pollutants. There are more than 20 processes related to activated carbon as adsorber or biological activated carbon in Korea. The saturated carbon by pollutants can be reused by reactivation. However, the effect of reactivation on activated carbon is not well-understood in terms of changing physical properties of carbon to adsorption capacity of natural organic matter (NOM). In this study, the effects of reactivation on physical properties of activated carbon were investigated by isotherm and breakthrough of NOM. Ash content was increased from 8% to 13.3%. Iodine number is commonly used as an indicator for performance of reactivation. The iodine number was decreased about 20% after reactivating twice. The degree of reactivation can be evaluated by not only iodine number but also apparent density.

Microwave heating system을 이용한 구형활성탄의 재생특성

  • Kim, Beom-Jun;Kim, Yun-Gap;Choe, Seong-U
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.126-127
    • /
    • 2007
  • 본 연구는 Microwave를 이용하여 활성탄의 재생특성을 파악하는데 목적을 두었다. Microwave의 조사횟수를 달리하였을때 활성탄의 특성 변화분석하였다. BET 분석결과 조사 후 분석 값이 조사 후 분석 값보다 떨어짐을 알 수 있다. 이는 MW를 조사함으로써 활성탄의 온도가 상승이 되고 이로 인해 기공의 파괴가 있음을 알 수 있다. 각 물질별로 20번씩 조사 하여서 나타난 결과를 보면 비표면적이 각각 8.2%(A), 5.68%(B), 0.38%(C) 줄었다. 활성탄 C의 경우는 조사 후 감소된 면적이 가장 적었는데 이는 먼저 제조하였던 활성탄의 경우는 활성탄의 성분이 제기능이 못할 정도로 소성을 하였거나 탄소성분의 변질이 있었음을 알 수 있다.

  • PDF