• 제목/요약/키워드: 재생에너지 시스템

Search Result 1,390, Processing Time 0.028 seconds

A Study on the Planning Technique of High-rised Housing Estates Applying Smart Green City Concept : Focus on Multi-functional Administrative City 2-1 Neighborhood (스마트 그린시티 개념을 적용한 고층주거단지 계획기법에 관한 연구 : 행정중심복합도시 2-1생활권을 중심으로)

  • Lee, Seo-Jeong;Lee, Eung-Hyun;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.379-387
    • /
    • 2016
  • The goal of this research is to identify the planning techniques of high-rise housing estates applying a smart green city concept in order to understand the necessity of integrating 'planning & building' planning techniques and 'smart system' planning techniques and to analyze the current status of application. For the research, firstl, the definition of smart green city was established and high-rise housing estates planning was categorized according to a three space hierarchy, seven planning directions and 17 major features through literature review. Second, 28 'planning & building' planning techniques and 'smart system' planning techniques were derived through literature review and FGI analysis. Last, four cases in Multi-functional Administrative City were analyzed for the current status of application of planning techniques. In conclusion, planning techniques in 'Transportation Network', 'Environment-friendly layout planning of housing', 'Revitalization of green transportation', 'Utilization of new & renewable energy', 'Crime prevention and accident reduction', 'Use of high performance, and efficiency facility' main feature were identified as important planning techniques for Smart Green City and its implications were estimated.

Semantic Segmentation for Roof Extraction using Official Buildings Information (건물 통합 정보를 이용한 지붕 추출 의미론적 분류)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.582-583
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. . In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period (Hajj) is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period (Haj) to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul - (고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 -)

  • YI, Chae-Yeon;KWON, Hyuk-Gi;Lindberg, Fredrik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.26-49
    • /
    • 2018
  • The purpose of this study was to verify the reliability of the solar radiation model and discuss its applicability to the urban area of Seoul for summer heat stress mitigation. We extended the study area closer to the city scale and enhanced the spatial resolution sufficiently to determine pedestrian-level urban radiance. The domain was a $4km^2$ residential area with high-rise building sites. Radiance modelling (SOLWEIG) was performed with LiDAR (Light Detection and Ranging)-based detailed geomorphological land cover shape. The radiance model was evaluated using surface energy balance (SEB) observations. The model showed the highest accuracy on a clear day in summer. When the mean radiation temperature (MRT) was simulated, the highest value was for a low-rise building area and road surface with a low shadow effect. On the other hand, for high-rise buildings and vegetated areas, the effect of shadows was large and showed a relatively low value of mean radiation temperature. The method proposed in this study exhibits high reliability for the management of heat stress in urban areas at pedestrian height. It is applicable for many urban micro-climate management functions related to natural and artificial urban settings; for example, when a new urban infrastructure is planned.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Risk Assessment of Stationary Hydrogen Refueling Station by Section in Dispenser Module (고정식 수소충전소에서의 Dispenser Module 내 구역별 위험성 평가)

  • SangJin Lim;MinGi Kim;Su Kim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.76-85
    • /
    • 2023
  • Demand for hydrogen as a renewable energy resource is increasing. However, unlike conventional fossil fuels, hydrogen requires a dedicated refueling station for fuel supply. A risk assessment of hydrogen refueling stations must be undertaken to secure the infrastructure. Therefore, in this study, a risk assessment for hydrogen refueling stations was conducted through both qualitative and quantitative risk assessments. For the qualitative evaluation, the hydrogen dispenser module was evaluated as two nodes using the hazard and operability (HAZOP) analysis. The risk due to filter clogging and high-pressure accidents was evaluated to be high according to the criticality estimation matrix. For the quantitative risk assessment, the Hydrogen Korea Risk Assessment Module (Hy-KoRAM) was used to indicate the shape of the fire and the range of damage impact, and to evaluate the individual and social risks. The individual risk level was determined of to be as low as reasonably practicable (ALARP). Additional safety measures proposed include placing the hydrogen refueling station about 100m away from public facilities. The social risk level was derived as 1E-04/year, with a frequency of approximately 10 deaths, falling within the ALARP range. As a result of the qualitative and quantitative risk assessments, additional safety measures for the process and a safety improvement plan are proposed through the establishment of a restricted area near the hydrogen refueling station.

Diagnosis of Conflict Problem between the Marine Environmental Conservation and Development, and Policy Implication for Marine Spatial Planning (해양환경보전과 이용·개발의 상충 분석과 해양공간계획에 대한 시사점)

  • Lee, Dae In;Tac, Dae Ho;Kim, Gui Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.227-235
    • /
    • 2016
  • This paper emphasized the necessity of the marine spatial planning (MSP) through the analysis of the major developmental projects which could make a contradiction based on the adequacy of the site selection and environmental impacts. The conflicting affairs between space utilization and management plan happen in the following ways: marine renewable energy development, sand mining, reclamation, construction of golf course in coastal area, thermal effluent and waste heat, erosion causing port development. The conflict of stakeholder continues caused by the accumulated environmental impact. For the reasons mentioned above, we found two things. First, it is necessary to comprehend the fact of developmental planning and MSP. Second, it is still unsatisfactory to connect the relevance of laws related to the spatial planning. For the reinforcement of marine environmental policy management, it is necessary to consolidate the property of site selection and assessment of developmental scale. Especially, while the strategic environmental assessment is in progress based on site selection and property of scale, consistent diagnosis is needed in the following concerns: the fact of the marine spatial planning, the relevance between national developmental plan and regional developmental plan, fisheries regulation, marine protected animals. For the environmentally sound and sustainable development (ESSD), MSP should have to be prepared based in a way of top-down including coastal and EEZ plan, relevance of ocean-use zoning and sector planning, 3-D spatial information. And also integrated information system have to be prepared through high-tech marine spatial information. In conclusion, consistent and relevant strategy for MSP should have to include the whole information related to the maritime affairs such as harbor, fishing port, fishing ground, coastal management, marine ecosystem generally.

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

The Comparative Analysis on Critical Planning Methods and Application Condition of Low-carbon Green City (저탄소 녹색도시의 주요 계획기법과 적용실태 비교분석)

  • Jeon, Woo-Seon;Lee, Eunghyun;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2491-2502
    • /
    • 2014
  • The main objective of this study is to find out the main fields and methods to create a low carbon green city. Through the findings, we hope to figure out the matters that must be focused on in order to realize a low carbon green city. In order to accomplish this, we organized the main fields and methods of fulfilling this accomplishment by taking a look at recorded documents and past studies related to the creation of low carbon green cities and related concepts. Then a FGI analysis was performed in order to examine suitability and deduct a planning technique. Also, through professional surveys and AHP analysis, we figured out the importance of planning techniques to understand the main characteristics of planning a low carbon green city. We also selected domestic and foreign cases, analysed the actual conditions of applying the deducted planning techniques, and compared the importance of planning techniques in order to see the difference between our plans and real results. 15 planning techniques were deducted and divided into 5 groups. The importance analysis and case analysis showed the following to be the main elements in planning the creation of a low carbon green city: compact high-density development, a traffic system revolving around pedestrians, active utilization of new and renewable energy, and establishment of a recycling system for waste.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.