• Title/Summary/Keyword: 재료 유실

Search Result 72, Processing Time 0.035 seconds

Suitability Examination of Flex sensor and FBG Sensor for Levee Safety Management (제방 안전관리를 위한 Flex센서와 FBG센서의 적용성 검토)

  • Lee, In-Je;Lee, Eun-Tae;Kang, Jeong-Hoon;Kim, Dong-Min;Chang, Ki-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1135-1142
    • /
    • 2008
  • Collapse of the levee surrounding structure(culvert) accounts for l0 % of collapse factors of the river levees. In particular, in 2002, the levee collapse that happened at "Nakdong River" at flood usually happened around culverts. This levee collapse has mechanism that the cavity expands with internal erosion at flood after the pore and cavity are formed between culvert and levee copula which are heterogeneity material. The study regarding the cavity or flowing detection around a culvert for safety management of a river levee is in the proceeding. In this study, the characteristic of two sensors could be figured out through an experiment about displacement measure of Flex sensor and FBG sensor and the decision of more suitable sensor was possible for safety supervision of river levee. According to an experiment result, several characteristics of FBG sensor could be known in consistency of the measure data and minute displacement measure part regarding displacement measure and this characteristic may supplement a shortcoming of Flex sensor at this time.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Seepage Behaviors on the Box Culvert Side of Enlarged Levee (하천 보축제체의 배수통문 구조물 측면부 침투 특성)

  • Yang, Hakyoung;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.19-30
    • /
    • 2020
  • This numerical study is to investigate the seepage characteristics of the side of the structure in the event of leakage from the structural connection part of the drainage structure installed through the enlarged levee, and to analyze the effect of piping on the stabilization of the levee by the lateral penetration behavior. To take into account lateral seepage behavior, 2D and 3D numerical analyses were performed on the same model, and the effect of lateral seepage was analyzed to assess the validity of the numerical analysis. As a result, when leakage occurs and a lateral seepage is considered with the gate located on the riverside land, the maximum pore water pressure near the leakage point of the structure has been reduced by half compared to the normal seepage state where no leakage occurred. Excessive variation in the pore pressure was shown at the lower part of the structure, especially if lateral seepage is not considered. As a water level rises to the high water level, it shows the hydraulic gradient was larger than the critical hydraulic gradient, which will be vulnerable to long-term piping. If a gate is located in the inland and side seepage is not considered, the effect of the seepage water such as hydraulic gradient and seepage velocity is underestimated compared with the case of considering side seepage. The maximum hydraulic gradient is relatively small when lateral seepage is neglected if a gate is located in the riverside land and there was might be a risk of piping or loss of material. In addition, the period exceeding the critical hydraulic gradient was interpreted as a short time zone. As a result, it is considered that the possibility of piping can be underestimated if side seepage is ignored.

A Study of Material and Production Technique of Scroll Painting Ring in Joseon (조선시대 족자 장황에 사용된 고리의 재료 및 제작기법 연구)

  • Jang, Yeonhee;Yun, Eunyoung;Kwon, Yoonmi;Kim, Sooyeon
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.56-81
    • /
    • 2015
  • Ring in the scroll painting is one of the mounting elements which are fixed string and tassel to hang, these differ widely in shape and produce a variety of metals. Most traditional shapes of ring have been lost, because of remount, there are used Japanese style rings in present.Therefore, this study examines to shape, production technique and analyze component traditional style rings of 19 traditional scroll paintings in National Museum of Korea for restoration of original style. Ring has been recorded official names; Wonhwan(Ring), Gukhwadong(Chrysanthemum shaped ornaments), Baemok(Ring-shaped nail) in Uigwe. Result of an optical microscope (Leica, M205A), Wonhwan has two type of production technique; one is cutting and bending a metal rod and other is cast. Baemok is made to forging process after metal rod or plate by casting alloy. Baemok decoration is metal plate cutting shape, and then decorates it with pattern by using kicking line engraving, chasing and so on. Component analysis result from portable X-ray fluorescence found various metals, such as, brass, iron silver-cooper. Brass based on copper and zinc used rings of 17 scroll painting. Baemok of Yun Sidal portrait is used iron and plated with a tin-lead alloy. Yi Seogu portrait is silver-cooper alloy in whole ring.

Development of Measuring Method for Bridge Scour and Water Level Using Temperature Difference Between Medium Interfaces (매질 경계면의 온도 변화를 이용한 교량 세굴 및 수위 측정방법 개발)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.126-133
    • /
    • 2014
  • The main source of bridge destruction is due to scour. The bridge scour is the result of erosive action of flowing water taking away ground materials from near the abutment or pier. Furthermore, the water level must be also monitored whiling flooding, because it dangers not only the stability of bridge itself, but the safety of bridge users. This study is intended to develop a new measuring system for bridge scour by overcoming the current limitation of scour measurement technique. This measuring system is confirmed its excellence and validity through this study. The newly developed measuring system finds the distance between the water surface and the ground surface by detecting temperature difference along the abutment vertically. The measuring mechanism for monitoring the bridge scour and water level is based on identifying the temperature difference among mediums, including air, water and ground. In order to validate the new measuring system, the lab experiments and the field tests are conducted and compared. It has been confirmed that this system can effectively measure the bridge scour and the water level by analyzing the temperature distribution between mediums and the temperature variation over time.

상이한 삼림생태계에서의 토층분화 특성과 변화에 따른 수분 이동 특성

  • 정덕영;오종민;진연호;손요한;주영특
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.06a
    • /
    • pp.69-73
    • /
    • 1998
  • 경기도 퇴촌에 위치한 경희대학교 연습림내의 경사도와 수종을 달리하는 3개의 서로 다른 임반에서 등고선을 따라 지표면의 토층분화를 조사하였고 이에 따른 수분침투특성을 조사하였다. 3개의 임반은 낙엽송, 잣나무 및 굴참나무의 천연활엽수로 구성되었고 이에 구성 수종에 따라 지표면에 퇴적되는 O, A, B층의 깊이를 달리한다. 토층분화 길이는 3개 임반 모두 경사도가 낮은 하부사면에서 양호하게 발달하였으며 경사도가 높은 산사면이나 수간우가 많은 일부 지역에서는 유거수에 의해 유기물이나 표층토가 유실되어 바로 암반층 또는 풍화층이 나타나는 경향을 보이고 있다. 그러나 잣나무 임반의 경우 밀식 수간에 의해 유기물퇴적층과 A층의 발달이 다른 낙엽송이나 굴참나무 임반보다 토층 발달 깊이가 약 2배 이상으로 깊게 발달되었다. 그리고 조사된 임반의 하부사면의 경우 A층의 발달이 약 35cm부터 약 60cm에 이르고 있으나 토성을 구성하는 요소 중 직경 2mm 이상의 자갈에 토양입자들이 전체 토양의 40%정도를 차지하고 있다. 이러한 토층분화 특성을 달리하는 임반에서의 수분 이동특성은 퇴적된 유기물의 두께가 깊으면 깊을수록 수분침투율은 낮아지는 반면 포면 유거수량은 증가하는 경향을 보여주고 있다. 그리고 지표면, 유기물 퇴적층 아래, 지표면으로부터 30cm 아래에 설치된 Lysimeter를 이용하여 조사된 침출수의 분포는 전체를 100으로 환산시 지표면은 약 55%, 유기물퇴적층 아래는 30%, 그라고 30cm의 위치에서는 나머지 15%정도의 침출수가 포집되었다. 따라서 본 실험의 결과를 살펴보았을 때 지표 층에 존재하는 유기물이 전체 수분이동에 영향을 미치는 것으로 조사되었다.양 실험 결과, 서식지에서 조사된 결과인 잎과 줄기에서 Pb$\alpha$ 추정시에는 SeaWiFS 위성과 관련된 global algorithms 중에서 490nm와 555nm의 복합밴드를 포함하는 OC2 알고리즘(ocean color chlorophyll 2 algorithm)을 사용하는 것이 OC2 series 및 OC4 알고리즘보다 좋은 추정 값을 도출할 수 있을 것으로 기대된다.환경에서는 5일에서 7월에 주로 이 충체의 유충이 발육되고 전파되는 것으로 추측되었다.러 가지 방법들을 적극 적용하여 금후 검토해볼 필요가 있을 것이다.잡은 전혀 삭과가 형성되지 않았다. 이 결과는 종간 교잡종을 자방친으로 하고 그 자방친의 화분친을 사용할 때만 교잡이 이루어지고 있음을 나타내고 있다. 따라서 여교잡을 통한 종간잡종 품종육성 활용방안을 금후 적극 확대 검토해야 할 것이다하였다.함을 보이고 있다.X> , ZnCl$_{3}$$^{-}$같은

  • PDF

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

Structure Analysis and Scale Model Test for Strength Performance Evaluation of Submersible Mooring Pulley Installed on Floating Offshore Wind Turbine (부유식 해상풍력발전기용 반잠수식 계류 풀리의 강도 성능평가를 위한 구조해석과 축소 모형시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing owing to global warming. In a situation where the installation of floating wind turbines is increasing worldwide, concerns about the huge loss and collapse of floating offshore wind turbines owing to strong typhoons are deepening. A new type of disconnectable mooring system must be developed for the safe operation of floating offshore wind turbines. A new submersible mooring pulley considered in this study is devised to more easily attach or detach the floating of shore wind turbine with mooring lines compared with other disconnectable mooring apparatuses. To investigate the structural safety of the initial design of submersible mooring pulley that can be applied to an 8MW-class floating type offshore wind turbine, scale-down structural models were developed using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by conducting the tensile tests. The finite element analysis (FEA) of submersible mooring pulley was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the FEA, the structural weak parts on the submersible mooring pulley were reviewed. The structural model tests were conducted considering the main load conditions of submersible mooring pulley, and the FEA and test results were compared for the locations that exceeded the maximum tensile stress of the material. The results of the FEA and structural model tests indicated that the connection structure of the body and the wheel was weak in operating conditions and that of the body and the chain stopper was weak in mooring conditions. The results of this study enabled to experimentally verify the structural safety of the initial design of submersible mooring pulley. The study results can be usefully used to improve the structural strength of submersible mooring pulley in a detailed design stage.

Studies on the Anther Culture of Prunus mume S. et Z. and the Other Three Species (Prunus mume S. et Z. 외(外) 삼종(三種)의 약배양(葯培養)에 관(關)한 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 1976
  • When haploid plant would be appeared by the anther culture, the large quantity of young plant multiplied maternal inheritance and the same pure line rapidly in the short length of time, which will be effected to cut down much expences efforts and time for the production of seeds or seedlings. Therefore, the development of the technique for this would be much profited in the country industry. In the late of a few years studies were early attempted in this field, but up this time there were a few success of plants only and none of perennial plant. In this status of the country condition required earnestly for the development of the green industry, this researcher attempted to culture the anther of late uninucleate microspore or early binucleate microspore of the Prunus mume and other three psecies, economic trees estimated specially economic, on the place of Modified Murashige and Skoog's medium supliment with Kinetine, 2.4-D, and N.A.A for inducing haploid plants. The obtained results were as follows: 1. 2,000 anthers were cultured and there were shown that 2N callus in Prunus mume had 82 as 4.1%, 2N callus in Prunus tomentosa 15 as 0.8%, 2 N callus in Prunus salisina 75 as 4% 2. N callus had shown 40 as 2% from Prunus armeniaca var. ansu only, and the other trees showed all 2N callus. 3. Callus had appeared in every tree but 2N callus appeared was all filaments and there showed from only connective tissue N callus appeared was all from anther locule inside. 4. Then Prunus armeniaca var. ansu only was not callus of somatic anther tissue origin, but as there was callus origined from microspore which was changed in to swollen microspores or polynucleate microspores, it was certained to need haploid plant.

  • PDF

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.