• Title/Summary/Keyword: 재료 시험

Search Result 4,145, Processing Time 0.03 seconds

Evaluation on Strength Characteristics of Reactive Materials to Prevent the Diffusion of Organic Pollutants (유기오염물 차단을 위한 반응재료의 강도 특성 평가)

  • Jai-Young Lee;Seung-Jin Oh;Su-Hee Kim;Kicheol Lee;Jeong-Jun Park;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2023
  • This paper described the strength variation characteristics to evaluate the applicability of a reactive material that can absorb organic pollutants as an underground barrier. The Strength was evaluated by unconfined compression test. The test results showed that the strength of the reactive material according to the absorption of each pollutant was in the order of water > TCE > TPH. However, the strength of the reactive material absorbing TPH was greater than that of the case absorbing TCE, when the composition ratio of polynorbornene was 12% or less. The strength of the reaction material in contact with water continued to decrease as the polynorbornene composition ratio decreased. The strength of the reaction material in contact with TCE and TPH increased as the polynorbornene composition ratio decreased from 30% to 21%, and then decreased. In other words, the optimal composition ratio of the reactive material should be applied considering the strength due to contact with pollutants according to the stress conditions occurring in the ground.

Impact and Bending Characteristics of Dual Band Composite Antennas (복합 구조 이중대역 안테나의 충격 및 굽힘 특성)

  • Shin, Dong-Sik;Kim, Jin-Yul;Park, Wee-Sang;Hwang, Woon-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • We have studied the impact and bending characteristics of a dual band antenna (1.575, 2.645 GHz) with composite sandwich construction. Mechanical performance of the antenna can be improved by reinforcing the antenna by sandwiching the planar antenna with layers of carbon fiber-reinforced plastic(CFRP) and glass fiber-reinforced plastic(GFRP) using an adhesive film. According to the ASTM D7137, ASTM C393 and MIL-STD401B, impact and bending test were performed and the S-parameters and gains of the antenna were measured in order to verify electrical and mechanical performance. The maximum contact load and the bending load of the antenna are 4 kN and 400 N and gains of the antenna are 6 dBi and 4.6 dBi in the GPS and DMB bands, respectively. The proposed antenna structure can be applied to surfaces of vehicles.

Shrinkage Characteristic of Cementitious Composite Materials for Additive Manufacturing (적층공법을 적용한 시멘트계 복합재료의 수축특성)

  • Lee, Hojae;Kim, Ki-Hoon;Yoo, Byeong-Hyun;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2019
  • In the present study is focused on the evaluation of the shrinkage characteristics of mix proportion using viscosity agent for printing. Also, another purpose is to compare the shrinkage properties of the mold cast specimen with the additive manufactured specimen using 3D printing techniques. Viscosity agent makes the shrinkage was reduced by an average of 25% (as of 56 days) compared to the reference mix. The effects of reduced shrinkage were also founded, with a reduction of about 15% (as of 28 days).As a result of evaluating the shrinkage using the additive manufactured specimen and the mold cast specimen prepared by the printing mix, the shrinkage of the additive manufactured specimen was reduced by about 25% (based on 28 days). Based on the results of this study, it is possible to predict the shrinkage rate and the occurrence of cracks due to shrinkage on the printing of cement-based composite materials using 3D printing.

Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method (음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가)

  • 김상태;김덕윤
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, damage evaluation of glass fiber reinforced thermoplastic composites was investigated with acoustic emission method. Specimens of 1.7mm thickness laminate were made from PET and 7 layers o171ass fabrics. Notch and impact loading were added to the specimen and normal tensile test and tensile test with the dead load were carried out. AE signal was measured as the functions of notch ratio to the width0 and impact energy in order to find out the correlation between fracture mode and AE parameters. The result has shown that low amplitude of AE signal was due to the microcrack of matrix and its growth, whereas the amplitude in the mid range was the response to the delamination and interfacial separation. In the range of high amplitude above 90dB. the fracture of glass fabric was found. Tensile strength decreased with increasing notch ratio to the width and impact energy because of tile effect or delamination, the cracking of matrix and stress concentration. In proportion to the size of damaged area. AE signal showed its wider range of frequency and energy as well as increased number of hits.

  • PDF

Evaluation of Fracture Behavior on Particle Reinforced Composite Using Digital Image Correlation (DIC를 이용한 입자강화 복합재료의 파괴거동 평가)

  • Hong, Sang-Hyun;Lee, Jeong-Won;Kim, Jae-Hoon;Lee, Sang-Yeon;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.535-541
    • /
    • 2018
  • In this study, wedge splitting tests were performed to evaluate fracture behavior of particle reinforced composite materials. Crack resistance was evaluated by using CTOD (crack tip opening displacement) and crack tip opening angle (CTOA). The particle reinforced composites were tested under various temperature ($-60^{\circ}C{\sim}50^{\circ}C$) and load speed (5~500mm/min). Also, digital image correlation method (DIC) was used to analyze the strain field at crack tip. Test results showed that the fracture energy increased with decreasing temperature and crack resistance increased with increasing load velocity.

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

Evaluation of the Compaction Characteristics of CFRD Construction Materials (CFRD 시공시 축조재료의 다짐특성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Park, Jong-Hwa
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2010
  • A prototype of a Concrete-Faced Rock-fill Dam (CFRD) was constructed to evaluate the behavior of the materials in each zone within the dam. The tested materials, selected based on their grain size distribution, were used in constructing the prototype dam with layers of variable thickness, settlement ratio, and water content. We investigated the suitability of various values of hydraulic conductivity, water content, dry unit weight, and settlement ratio for zones within the dam. The test results revealed the relationships between the number of passes and the dry unit weight, between the dry unit weight and the settlement ratio, and between the settlement ratio and the number of passes. This paper focuses on the relationship between hydraulic conductivity and the number of passes. The results of the present analysis could be used to establish reasonable compaction standards for materials used in dam construction.

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.

Evaluation of Nondestructive Damage Sensitivity on Single-Basalt Fiber/Epoxy Composites using Micromechanical Test and Acoustic Emission with PZT and PVDF Sensors (PZT 및 PVDF 센서에 따른 음향방출과 Micromechanical 시험법을 이용한 단일 Basalt 섬유 강화 에폭시 복합재료의 비파괴 손상감지능 평가)

  • Kim, Dae-Sik;Park, Joung-Man;Jung, Jin-Kyu;Kong, Jin-Woo;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.61-67
    • /
    • 2004
  • Nondestructive damage sensitivity on single-basalt fiber/epoxy composites was evaluated by micromechanical technique and acoustic emission (AE). Piezoelectric lead-zirconate-titanate (PZT), polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer were used as AE sensor, respectively. In single-fiber composite, the damage sensing with different sensor types were compared to each other. Piezoelectric PVDF polymer sensor was embedded in and attached on the composite, whereas PZT sensor was only attached on the surface of specimen. In case of embedded polymer sensors, responding sensitivity was higher than that of the attached case. It can be due to full constraint inside specimen to transfer elastic wave coming from micro-deformation. For both the attached and the embedded cases, the sensitivity of P(VDF-TrFE) sensor was almost same as that of conventional PVDF sensor.

Measurement of Longitudinal and Transverse Wave Speed in Solid Materials Using Immersion Ultrasonic Testing (수침 초음파 시험법을 이용한 고체의 종파와 횡파 속도의 측정)

  • Shin, Yo-Sub;Yoon, Yeo-Ho;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Immersion ultrasonic testing (UT) was used to determine elastic moduli of solid materials instead of the widely-used contact UT method. Conventionally, immersion UT is only used for determining the longitudinal wave speed. However, in this research, transverse wave speed was measured through finding transverse wave echoes caused by mode-conversion at material's boundary. Also, even in the cases when wave speeds could not be determined due to unknown thickness, Poisson's ratio was able to be calculated from the ratio of longitudinal and transverse wave speeds. This technique was verified for several materials, and it was found that higher accuracy was obtained by immersion UT method for materials either with relatively high wave speed or with relatively small Poisson's ratio. This technique thus will be suitable fur ceramics or high strength materials.