• Title/Summary/Keyword: 재료 시험

Search Result 4,135, Processing Time 0.032 seconds

자동차용 강판의 온도에 따른 기계적 특성

  • Hyeon, Ju-Sik;Lee, Bo-Ryong;Mun, Man-Bin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • 겨울철 혹한지방에서의 차량운행 또는 여름철 혹서지방에서의 장시간 차량 운행시 차체를 구성하고 있는 강판에는 약 $-50^{\circ}C{\sim}150^{\circ}C$의 온도환경에 처하게 된다. 따라서 이러한 저온 고온 환경하에서 차체 충돌상품성 예측 및 충돌안전 설계를 위해 온도에 따른 차체 강판의 기계적 물성평가가 요구된다. 이를 위해 본 연구에서는 자동차용 충돌부재에 주로 쓰이는 HS440MPa, HS590MPa급 냉연 고장력 강판에 대해 $-60^{\circ}C{\sim}200^{\circ}C$의 온도범위로 저온 고온 인장시험을 수행 하였다. 각각의 인장시험 결과로부터 온도 별 항복강도, 인장강도, 연신율, 가공경화지수 등 기계적 물성 변화를 평가하였다. 저온 고온 인장시험은 ZWICK Z250 만능재료시험기를 사용하였고 KS5호 규격의 인장시편을 사용하였으며, 시편에 충분한 온도를 가하기 위하여 목표온도 도달 후 20분간 유지한 뒤 인장시험을 수행하였다. 인장시험결과 HS440MPa, HS590MPa급 두 강종 모두 온도가 낮아질수록 강도 및 연신율 등이 증가하였고, 온도가 증가할수록 강도 및 연신율 등 기계적 물성이 저하 되었다. 즉, 우리가 주로 평가해왔던 상온($25^{\circ}C$)에 비해 저온 고온 환경하에서는 강판의 기계적 물성 변화가 큰 것을 알 수 있다. 따라서 혹한 또는 혹서 지방 등 온도차이가 큰 운행환경하에서의 차체 강도 및 충돌안전성 확보를 위해 온도에 따른 강판의 정확한 물성평가가 필요하고 차체 설계시 온도에 따른 강도변화를 충분히 고려하여야 한다.

  • PDF

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

The Design of a Hybrid Composite Strut Tower for Improving Impact Resistance and Light-weight (내충격성 향상 및 경량화를 위한 하이브리드 복합재료 스트럿 타워 설계)

  • Lee, Hyun Chul;Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 2013
  • Hybrid composite strut tower was designed to prevent permanent deformation of upper mount by the impact from the uneven road. When exceeding energy absorption capacity of tire and suspension systems, residual impact is delivered to upper mount. Especially, in case of using high-rigidity suspension system for high driving performance, the conventional strut tower can be easily deformed due to reduction of energy absorption capacity of suspension systems. In this study, optimal design of hybrid composite strut tower which made of back-up metal and carbon fiber reinforced composite was suggested by using finite element analysis, and low velocity impact test was performed to investigate their dynamic characteristics. Also, 3D measuring and ultra c-scanning methods were carried out to diagnose damages in the strut towers.

Advanced Methodology of Composite Materials Qualification for Small Aircraft (소형항공기용 복합재료 인증시험)

  • Lee, Ho-Sung;Min, Kyung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.446-451
    • /
    • 2007
  • Since the introduction of advanced composite materials for use in aircraft, the material qualification has been a costly burden to the small airframe manufacturer. For each manufacturer, extensive qualification testing has often been performed to develop the base material properties and allowables at operating environmental conditions, regardless of whether this material system had been previously certificated by other manufacturers. In recent years, NASA, industry, and the FAA have worked together to develop a cost-effective method of qualifying composite material systems by the sharing of a central material qualification database. In this paper, the new methodology of composite material qualification is presented and material allowable of 350°F carbon fiber/epoxy composite material produced domestically is determined with this methodology.

A Study on the Impact Properties of Solid-phase Formed Glass Fiber Reinforced Thermoplastic Composite (유리섬유 강화 열가소성 복합재료 고상 성형품의 충격특성에 관한 연구)

  • 이중희;정광진;최창근
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.8-14
    • /
    • 1999
  • This research is focused on the investigation of impact strength and the microscopic observation of material behavior of glass fiber reinforced polypropylene in solid phase forming. The fiber weight per-centage of the composite materials was 20%, 30% and 40%. The solid-phase formed specimens were pre-strained to 10%,20%. and 30% strain levels. The forming temperatures of specimens were $100^{\circ}C$, $125^{\circ}C$ and $150^{\circ}C$. Izod impact test was performed with unnotched specimens. With increasing the glass fiber content ; the impact strength was increased.

  • PDF

Cure Cycle for Thick Glass/Polyester Composites (두꺼운 유리섬유/폴리에스터 복합재료를 위한 경화 사이클)

  • 김형근;오제훈;이대길
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.33-42
    • /
    • 2001
  • The cure kinetic equation fur 52-glass/polyester prepreg composites was established through DSC (differential scanning calorimetry). Using the established kinetic equation, the temperature distribution of the thick composite was calculated considering the change of heat transfer resistance due to resin impregnation of bleeder plies used. In order to reduce the overheat during cure of thick glass fiber composites, the cure cycle was modified by introducing the cooling and reheating steps. Then the thick glass composites were cured both by the conventional cycle without any cooling or reheating step and the modified cure cycle. The mechanical properties of the thick composites cured by the both cycles were tested by the short beam shear test and the Barcol hardness test, and then their results were compared.

  • PDF

Thermal Degradation Behavior and Reliability Analysis of Plastic Materials for Household Electric Appliances (가전제품용 플라스틱 재료의 열분해 거동 및 신뢰성 평가)

  • Im, Chang-Gyu;Kim, Jun-Young;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • The thermal degradation behavior and reliability analysis were investigated using dynamic thermogravimetric analysis (TGA) and accelerated degradation test (ADT) to characterize the dynamic parameters related to thermal degradation of plastic meterials for household electric appliances. In addition, the weathering of the plastic were performed by ADT using Xenon uc, and the color difference of the samples after ADT were measured with Color Eye 3010 specoophotometer. he activation energy for thermal degradation of the samples increased with increasing the rate of weight loss. The Kim-Park method was found to be more effective analysis in describing thermal degradation of plastic meterials. Plastic materials were very sensitive to ultra-violet rays in faster degradation.

Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite (SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • Reversed plane bending fatigue tests were conducted on SiC particle reinforced and SiC whisker reinforced aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and the causes of fracture and fracture mechanism were investigated by SEM. The relationship between da/dn and $K_{max}$ show that da/dn increases in high stress level while decrease and again increases with increasing of $K_{max}$ in low stress level for two materials.

Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites (하이브리드 섬유 보강 시멘트 복합 재료에서 구조용 합성 섬유의 인발 거동에 미치는 폴리비닐 알코올 섬유 혼입률의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2011
  • In this study, the effect of polyvinyl alcohol (PVA) fiber volume fraction on the pullout behavior of structural synthetic fiber in hybrid structural synthetic fiber and PVA fiber cement composites are presented. Pullout behavior of the hybrid fiber cement composites and structural synthetic fiber were determined by dog-bone bond tests. Test results found that the addition of PVA fiber can effectively enhance the structural synthetic fiber cement based composites pullout behavior, especially in fiber interface toughness. Pullout test results of the structural synthetic fiber showed the interface toughness between structural synthetic fiber and PVA fiber reinforced cement composites increases with the volume fraction of PVA fiber. The microstructural observation confirms the incorporation of PVA fiber can effectively enhance the interface toughness mechanism of structural synthetic fiber and PVA fiber reinforced cement composites.

Effect of Thermal Aging on Material Strength and Fracture Behavior in Mod.9Cr-1Mo Steel (열시효가 Mod.9Cr-1Mo강의 재료강도 및 파괴 거동에 미치는 영향)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Son, Seok-Kwon;Hong, Suk Woo;Seok, Chang Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.101-109
    • /
    • 2016
  • The material properties of heat resistant materials at power plants are affected by thermal aging as operating time is accumulated. In this study, the influence of thermal aging on yield strength, tensile strength and fracture behavior for Mod.9Cr-1Mo (ASME Grade 91) steel which is a material widely adopted for Generation IV nuclear energy system has been investigated and analyzed. Service exposed Gr.91 steel materials sampled from a piping system of an ultra-supercritical (USC) plant in Korea with accumulated operation time of 73,716 hours were used for material testing. The test results of the service exposed material specimens were compared with those of the virgin Gr.91 steel specimens. Those test data were compared with the material properties of ASME code and RCC-MRx code. Conservatisms of the material properties in the design codes have been quantified based on the comparisons of those from virgin and service exposed material specimens.