• Title/Summary/Keyword: 재료 물성감소

Search Result 410, Processing Time 0.028 seconds

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Effect of Repeated Immersion on Material Properties of Asphalt Mixtures (반복적인 수침이 아스팔트 혼합물의 재료물성에 미치는 영향)

  • Hwang, Sung-Do;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • Moisture damage of asphalt mixtures can occur because of a loss of bond between the asphalt binder and the fine and coarse aggregates. Therefore, moisture damage on asphalt pavements is the main cause of potholes, which is one of the main distress type of asphalt pavement. The purpose of this study is to evaluation effect moisture damage on material properties of asphalt mixtures through the laboratory performance test. The existing Modified Lottman test procedure was improved and the number of times that thermal cyclic conditioning can be added until the asphalt mixtures is damaged, was tested in order to exhibit the changes of the material properties because of moisture damage by immersion. Through the above experiments, it was found that the material properties of asphalt mixtures on room-temperature were rapidly decreased with loss of about 50% at initial stage of moisture damage caused by the amount of repeated immersion. Also, it was found that the property damage ratio using material properties of failure energy and $DCSE_f$ by test temperature $25^{\circ}C$ were showed a high relationship to moisture damage of the asphalt mixtures caused by the amount of repeated immersion.

  • PDF

Accuracy of a direct estimation method for equivalent material properties of 1-3 piezocomposites (1-3형 압전복합재료 등가물성 직접 추출 기법의 정확도 분석)

  • Eunghwy Noh;Donghyeon Kim;Hyeongmin Mun;Woosuk Chang;Hongwoo Yoon;Seonghun Pyo;Kyungseop Kim;Yo-Han Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.377-387
    • /
    • 2023
  • This paper presents accuracy of a method that directly estimates equivalent properties of a 1-3 piezocomposite for modeling it into the single phase homogeneous piezomaterial. This direct estimation method finds individual components of a material property matrix based on the piezoelectric constitutive equations, which represent mechanical and electrical behaviors and their couplings. Equivalent properties on a single 1-3 piezocomposite hydrophone are derived, and their accuracy depending on pairing of the constitutive equations is investigated by comparing them with finite element analysis for the whole domain. The accuracy is related to elastic characteristics of a matrix polymer, and the error is analyzed so that some guidelines for correct estimation are suggested. Fidelity of estimated properties and equivalent modeling is shown in a stave scale including hydrophones and surrounding acoustic structures as well, and reduced computational cost is verified.

Investigation of Mechanical Property of Polypropylene and CF/PP Composites with Number of Recycle (재활용 횟수에 따른 폴리프로필렌 및 탄소섬유 강화 PP 복합재료의 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Lea, Tea-Ung;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.303-308
    • /
    • 2013
  • Carbon fiber (CF) reinforced polypropylene (PP) compositeis was increased to amount consumed. In this study, recycle of composites by recycle times. CF was containing 20%. Mechanical and interfacial propertis of CF/PP was evaluation for number of recycle time. Mechanical assessment of CF/PP was tension, bending, fatigue tension test and izod test method. Interfacial assessment of CF/PP was wettability test and FE-SEM of fracture surface method. Fiber and matrix was changed to recycle time. The more recycle of CF/PP, the more interfacial bonding was decreased. Because fiber and matrix was damaged to thermal damage. And then reinforced CF was shorter than original shape.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Mechanical Properties of Polypropylene/Talc Composites Prepared via Solid-State Extrusion (고상 압출된 폴리프로필렌/탈크 복합재료의 기계적 물성)

  • Lee, Jaechoon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.131-135
    • /
    • 2016
  • We investigated the specific gravity and mechanical property changes of solid-state extruded polypropylene (PP)/talc composites before and after orientation. The specific gravity of the composites increases with increasing the filler contents. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more micro-voids. It was found that the tensile properties of the composites are increased up to the talc content of 10 wt%, but after the contents exceeding 10 wt%, the tensile properties are decreased. For oriented specimens, the tensile strength of the composites showed monotonously decrease with increasing talc contents. When the contents of talc is 10 wt%, the theoretical values according to Halpin-Tsai equation are close to the experimental values but over 20 wt% of talc contents, the deviation of the experimental values from the theoretical prediction becomes higher. The maximum flexural strength and modulus were observed for PP/talc composites when the talc contents was 10 wt% for both pre-specimen and oriented specimen.

CSP 3N 박판재료의 기계적 물성 및 Woven Wire 구조물 인장 시험 기법 개발에 관한 연구

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.53-53
    • /
    • 2004
  • 최근 자동차/항공기 등의 판재나 구조물을 첨단기능성 재료로 제작하여 연료소비량을 감소시키는 동시에 승객의 안정성을 현저히 향상시키는 초경량/고강도/고강성/고내충격성 재료에 대한 연구가 활발히 수행되고 있다. 국내에서는 두개의 금속 박판사이에 3차원 금속 구조체를 대면적에 분포시킨 후, 판재와 구조체를 접합하여 재료의 무게를 현저히 감소시키는 반면 강도/강성/내충격성을 향상시키는 ISB(Internally Structured Bonded)판재 개발에 대한 연구가 시작되고 있다.(중략)

  • PDF

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

Effects of Orientation via Solid-State Extrusion on Properties of Polypropylene/Mica Composites (폴리프로필렌/마이카 복합재료의 물성에 미치는 고상압출 배향의 영향)

  • Lee, Jae Choon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The purpose of this work is to investigate the specific gravity, thermal, and mechanical property changes of polypropylene (PP)/mica composites before and after solid-state extrusion. On increasing the filler content, the specific gravity of the composites increased. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more microvoids. The presence of microvoids in the case of oriented composite specimen significantly affected the tensile and flexural properties of the composites. Both flexural strength and modulus of the composites showed maxima when the mica contents was 10 wt%, regardless of the orientation via solid state extrusion.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF