• Title/Summary/Keyword: 재료시험

Search Result 4,166, Processing Time 0.029 seconds

Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables (손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석)

  • Kim, Sang-Kuk;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • A three-dimensional finite analysis method was proposed to predict the failure of composite double-lap bolted joints, which is based on the stiffness degradation method using damage variables and Hashin's three-dimensional failure criteria. Ladeveze's theory using damage variables to consider the matrix/shear damage was combined with stiffness degradation in fiber direction. Four different failure modes were considered including matrix compression/shear, matrix tension/shear, fiber compression, and tension failures. The friction between bolt and composite and the clamping force were considered using a commercial finite element software ABAQUS. The damage model was incorporated using the user-defined subroutine of the software. The predicted result was verified with the existing test result for bearing tension double shear and showed the deviation ranging 7~16% from test results.

Toughness Improvement of Unsaturated Polyester Mortars Blended with Polyurethane Liquid Rubber (폴리우레탄 액상고무를 혼합한 불포화 폴리에스테르 모르타르의 인성 증진효과)

  • 최영준;박준철;박정민;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Generally polymer mortar and concrete using unsaturated polyester resin has high strengths and good chemical resistance. However it also has high brittleness and because of this reason, it is not used for the purpose that demands high resistance to impact. The purpose of this study is to improve the brittleness of unsaturated polyester mortar(UPE mortar) which could be used for the flooring material with recycled aggregates and UPE. Polyurethane liquid rubber(PU) and recycled aggregates were used to complement the brittleness and to recycle the resources respectively. The characteristics of mortar were investigated according to the molecular weight and substitution rate of PU. As the molecular weight and PU substitution rate were increased, the viscosity was increased, working life became fast and curing shrinkage was reduced. Compressive and flexural strengths were also reduced but tile brittleness was improved. Therefore, it is seemed that the improved WE mortar could be obtained by using polyurethane liquid rubber with the polyol of molecular weight 2000, 3000.

Planting-Ability Valuation of Porous Concrete Using Industrial By-Products (산업부산물을 이용한 포러스콘크리트의 식생능력평가)

  • 박승범;이봉춘;김정환;윤덕열
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.623-629
    • /
    • 2002
  • Porous concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze void ratio, strength property and planting ability when using silica fume and fly ash, the change of aggregate gradation and ratio of paste to aggregate. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the ratio of paste to aggregate gets larger. The planting ability of porous concrete is decided by the germination and the grass length of perennial ryegrass. The grass length of perennial ryegrass is longer when the gradation of aggregate is greater and the ratio of paste to aggregate gets smaller. Therefore the efficiency of planting goes through the perennial ryegrass is in compliance with the void ratio, aggregate gradation.

Analysis of Axial Restrained Behavior of Early-Age Concrete Using Sea-Sand (해사를 사용한 초기재령 콘크리트의 일축 구속 거동 해석)

  • 박상순;송하원;조호진;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • In this paper, finite element analysis is applied for simulation of cracks due to restraining autogenous and drying shrinkage at early-age concrete. A micro-level heat hydration model and a shrinkage prediction model along with a moisture diffusion model are adopted for the finite element analysis. Then, an axial restraint test is carried out for concrete specimens containing different amounts of chloride ions to evaluate stress development and cracking due to the restraining shrinkages at early ages. Test results show that the increase of contents of chloride ions increases restrained stress, but does not increase strength. By this increase of shrinkage strain at early-age, time to occur the crack is accelerated. Finally, stress development and cracking of concrete specimens containing different amount of chloride ions we simulated using the finite element analysis. Results of the analysis using the Proposed model are verified by comparison with test results.

A Study on the Improvement Mechanical Properties of Geosynthetic Interface (토목섬유 접촉면의 역학적 특성 개선에 관한 연구)

  • Nam, Yong;Kim, Gwangho;Kwon, Jeonggeun;Im, Jongchul;Seo, Jeochan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • In this study, Generally sandbag was used to reinforce slope or restore levee by using the in-situ material. To increase shear strength of sandbag, the Velcro system was effective for geosynthetic interface and make up for the weakness of shear strength between sandbag to sandbag. In this study, shear properties of geosynthetic-geosynthetic and geosynthetic-soil were evaluated from large scale direct shear tests. The cohesion and the angle of internal friction of each interface was evaluated. And laboratory model tests were performed to compare strength of reinforcement with strength of none reinforcement. As a result of this study, the cohesion and the angle of internal friction of each interface was increased, especially the cohesion was increased more than the angle of internal friction. Also according to the result of model test, the bearing capacity was increased by 20%.

A Study on Structural Characteristics of Stone Masonry Wall Structure (숭례문 사례를 통한 육축 문화재의 구조특성 연구)

  • Lee, Sung-Min;Lee, Ki-Hak;Choi, Hee-Soo;Park, Joo-Kyung;Choi, Chui-Kyoung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.61-69
    • /
    • 2011
  • It is hard to predict the mechanical characteristics of discontinuous stone masonry structures with the use of by the static analysis method, because of irregularity of face stones and also due to randomness of backfill materials. Inversely, one can estimate the mechanical characteristics by comparing the natural frequencies between measured from the field tests and computed from the analytical models. The aim of this paper is to investigate the effectiveness and confidence of the computational modeling method of ancient stone arch bridges in Korea and to find the factors influencing their dynamic characteristics. The results revealed that the rigidity of spandrel walls and backfill materials are the most important factors influencing the natural frequencies of stone arch bridges, which are the critical for the stability of the stone arch structure.

AE Characteristic of Polyethylene Pipe under various defects (다양한 결함에 대한 폴리에틸렌 배관의 음향방출 특성)

  • Nam Ki Woo;Lee Si Yoon;Ahn Seok Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.1-7
    • /
    • 2004
  • The polyethylene pipe can use semi-permanent because of the high corrosion resistance with chemical stability. In addition to, there is the merit that is an easy to establish and to maintain. However, as the reason that it is simply degraded when the polyethylene pipe was exposed to the outside, mainly it is used to lay under the ground with low-pressure gas transportation pipe. In this study, the nondestructive evaluation method was used to maintain the integrity of the polyethylene pipe. We simulated the various defects on the polyethylene pipes, and then the AE signal occurred according to the impact test of steel ball was evaluated by the acoustic emission method. From the results, the waveform and dominant frequency could be distinguishing from the defect shapes of polyethylene pipe. Especially, in the case of notch defect, the AE signals occur different by the angle and depth of the notch.

  • PDF

A Study on the Failure Mode of FRP Bridge Deck in It's Weak Axis (FRP 바닥판의 약축방향 파괴모드에 관한 연구)

  • Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho;Kang Young-Jong;Zi Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.73-83
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of fiber reinforced polymer (FRP) to improve its durability and life time significantly is investigated using both experiments and analyses. While the Load-displacement behavior of the deck in the longitudinal direction is almost linear just before the failure, the behavior in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. We found that the nonlinearity is due to the imperfection of the connection between the flange and the web; a plastic deformation can t라e place in the connection. The argument is demonstrated using a simple structural model in which a rigid plastic hinge is introduced to the connection. We also checked the contribution of the delamination mechanism to the failure. But the delamination is not the main mechanism which initiates and causes the failure of the bridge deck. In order to improved the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and confirmed the improved behavior by a numerical analysis.

Development of Monitor Chamber Prototype and Basic Performance Testing (모니터 전리함 시작품 개발과 기초 성능 평가)

  • Lee, Mujin;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Rhee, Dong Joo;Kang, Sang Koo;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The monitor chamber is a real time dosimetry device for the measurement and the control of radiation beam intensity of the linac system. The monitor chamber prototype was developed for monitoring and controlling radiation beam from the linac based radiation generator. The thin flexible printed circuit boards were used for electrodes of the two independent plane-parallel ionization chambers to minimize the attenuation of radiation beam. The dosimetric characteristics, saturation and linearity of the measured charge, were experimentally evaluated with the Co-60 gamma rays. The performance of the developed monitor chamber prototype was in an acceptable range and this study shows the possibility of the further development of the chamber with additional functions.

Forensic Engineering Study on Assessment of Damage to Aerial Lifter Parts (고소작업차 부품 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1727-1732
    • /
    • 2010
  • Forensic engineering is the area of expertise of people qualified to serve as engineering experts in courts of law or during arbitration proceedings. An aerial-lifter can lift and carry load, including people, using power. Recently, failure of aerial-lifter internal parts while working and sweeping causing injuries and damage to property almost always generates conflict between the automaker and customer. Hence, the investigation of such events generally involves an engineering analysis. One of the possible reasons for accidents, such as a vehicle catching fire is the failure of oil pressure machine and the supporting pin. The results of formal inspections and engineering tests can reveal the cause for the failure of the mechanical parts. Therefore, the failure mechanism is analyzed by adopting fractography methods and by applying an instrumented indentation technique to compare the material properties of the reference part with those of the malfunctioning part.