• Title/Summary/Keyword: 재난 시뮬레이션

Search Result 203, Processing Time 0.021 seconds

The Floor Layout Plan of Classrooms for Securing Evacuation Stability in School (학교의 피난 안전성 확보를 위한 층별 학급 배치방안)

  • Lee, Soon Beom;Lee, Jai Young;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.509-515
    • /
    • 2021
  • This study analyzes the efficient floor layout plan of classrooms for securing evacuation stability in school in case of fire by using the Pathfinder simulation program. Efficient evacuation methods and safety were evaluated by analyzing REST (Required Safe Egress Time) according to the allocation of personnel by floor targeting a high school 5-story building equipped with a ramp and stairs. The current status of personnel assignments exceeded the Required Safe Egress Time(RSET), resulting in a problem with evacuation safety. When students were placed on the 3rd, 4th, and 5th floors, the result was that the time exceeded RSET the most. When students were placed on the 1st, 2nd, and 3rd floors, the result was that they completed evacuation in the shortest time, less than RSET. In the current state, when evacuation was guided by designating an evacuation exit depending on the location, the result of shortening RSET was obtained. As a result, it is effective to put the students on the lower floors when placing students in high-rise school buildings in terms of evacuation safety, and in the preliminary training, it is required to designate evacuation exits so that they can use the nearest exit for each location in case of a fire. As a future research project, additional research is needed on the RSET when a fire occurs in a specific location according to whether the automatic fire door at that location is opened or closed.

A development of stochastic simulation model based on vector autoregressive model (VAR) for groundwater and river water stages (벡터자기회귀(VAR) 모형을 이용한 지하수위와 하천수위의 추계학적 모의기법 개발)

  • Kwon, Yoon Jeong;Won, Chang-Hee;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1137-1147
    • /
    • 2022
  • River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.

A Study on Precision of 3D Spatial Model of a Highly Dense Urban Area based on Drone Images (드론영상 기반 고밀 도심지의 3차원 공간모형의 정밀도에 관한 연구)

  • Choi, Yeon Woo;Yoon, Hye Won;Choo, Mi Jin;Yoon, Dong Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • The 3D spatial model is an analysis framework for solving urban problems and is used in various fields such as urban planning, environment, land and housing management, and disaster simulation. The utilization of drones that can capture 3D images in a short time at a low cost is increasing for the construction of 3D spatial model. In terms of building a virtual city and utilizing simulation modules, high location accuracy of aerial survey and precision of 3D spatial model function as important factors, so a method to increase the accuracy has been proposed. This study analyzed location accuracy of aerial survey and precision of 3D spatial model by each condition of aerial survey for urban areas where buildings are densely located. We selected Daerim 2-dong, Yeongdeungpo-gu, Seoul as a target area and applied shooting angle, shooting altitude, and overlap rate as conditions for the aerial survey. In this study, we calculated the location accuracy of aerial survey by analyzing the difference between an actual survey value of CPs and a predicted value of 3D spatial Model. Also, We calculated the precision of 3D spatial Model by analyzing the difference between the position of Point cloud and the 3D spatial Model (3D Mesh). As a result of this study, the location accuracy tended to be high at a relatively high rate of overlap, but the higher the rate of overlap, the lower the precision of 3D spatial model and the higher the shooting angle, the higher precision. Also, there was no significant relationship with precision. In terms of baseline-height ratio, the precision tended to be improved as the baseline-height ratio increased.