• 제목/요약/키워드: 재난 시뮬레이션

Search Result 203, Processing Time 0.024 seconds

The Investigative Study on the Small-sized Isolation Device: regarding of the isolation performance and function test In Emergency Disaster Circumstances (재난현장 소형격리장비의 성능 및 기능평가에 관련된 탐색적 연구)

  • Choi, Jin Woo;Haam, Sunnie;Yoon, Myuong O
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.135-141
    • /
    • 2020
  • The first case of Middle East Respiratory Syndrome (MERS) was reported in Korea in 2015, after a Korean man from Bahrain tested positive for the infection. After first eruption, there were numbers of secondary infectees and whole country were frightened. At the time, isolated ambulances were available but few, and there was no specific way to prevent contamination during transfer. Therefore, Seoul National University Hospital and the University of Seoul developed isolation units and air filters. Four years after the MERS outbreak, this study measured the differential pressure inside and outside the small isolation units based on the differential pressure and air flow derived from simulation and testing, and proposed minimum values for virus leakage and internal sealing. A performance evaluation and testing method for the transfer equipment is proposed. The critical function of the small isolated transport equipment was defined and selected as an evaluation item; performance evaluation was carried out by simulating a real-world case. The results provide the proper pressure configuration of positive and negative pressure inside the segregation feeder; the clear criteria for the HEPA filter; and the performance criteria for the segregation feeder and air purifier.

A Case Study of Calculating Flood Inundation Area by HEC-GeoRAS (HEC-GeoRAS 모형에 의한 침수면적산정 사례연구)

  • Kim, Chang-Soo;Lee, Young-Dai;Lee, Hwan-Woo
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • During the past few years, Korea has experienced extraordinary floods, which have caused many damages of lives and properties. Flooding caused by typhoon is the most common disastrous phenomenon of nature among all catastrophes. As the average temperature of the earth has been increasing by global warming, the possibility of typhoon is also increased by abnormal climate changes. Along with the river improvement as a part of flood control, the time of concentration has been decreased, so the pick discharge has been increased. Moreover, with the land development activities, the area of storage has been diminishing, and the damages from inundation have been continuously increasing. There were a lot of damages to farmland in 1960's, industrial and public facilities in 1970's, and a lot of sufferings from the windstorm in 1980's. In 1990's, however, the amount of damages was increased substantially. So, there is need to decrease the number of the victims and loss of properties by applying preventive measures against natural calamities. This study has employed a simulation system to calculate the depth and amounts of inundation areas to forecast and prevent from flood damage by using rainfall-runoff model. In this study, a case study method is adopted to show inundation by using rainfall-runoff model, HEC-GeoRAS and Arcview. It is hoped that, this study would be conducive to professionals and organizations working in the field of disaster management.

  • PDF

Developing algorithms for providing evacuation and detour route guidance under emergency conditions (재난.재해 시 대피 및 우회차량 경로 제공 알고리즘 개발)

  • Yang, Choong-Heon;Son, Young-Tae;Yang, In-Chul;Kim, Hyun-Myoung
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2009
  • The transportation network is a critical infrastructure in the event of natural and human caused disasters such as rainfall, snowfall, and terror and so on. Particularly, the transportation network in an urban area where a large number of population live is subject to be negatively affected from such events. Therefore, efficient traffic operation plans are required to assist rapid evacuation and effective detour of vehicles on the network as soon as possible. Recently, ubiquitous communication and sensor network technology is very useful to improve data collection and connection related emergency information. In this study, we develop a specific algorithm to provide evacuation route and detour information only for vehicles under emergency situations. Our algorithm is based on shortest path search technique and dynamic traffic assignment. We perform the case study to evaluate model performance applying hypothetical scenarios involved terror. Results show that the model successfully describe effective path for each vehicle under emergency situation.

  • PDF

A Study on Required Safe Egress Time (RSET) Comparison and Error Calculation in Relation to Fire Room Range Set Conditions of Performance Based Fire Safety Designers (성능위주설계자들의 화재실 범위 설정 방식에 따른 소요피난안전시간(RSET) 비교 및 오차산정에 관한 연구)

  • Baek, Sona;Choi, Jun-Ho;Hong, Won-Hwa;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • The Installation, Maintence, and Safety Control of Fire-fighting Systems Act of South Korea regulates that over 30-storey high-rise buildings including underground spaces should vitally perform the Performance-based Design to minimize property damage and personal injury as a fire risk assessment in advance. Therefore a PBD designer such as a fire safety professional engineer evaluate occupant's life safety by a scientific methodology. In order to evaluate the life safety, fire safety designers calculate the Required Safety Egress Time (RSET) which does not have the legal criteria regarding the standard method of calculation yet. So this way has been showing different results depending upon the designer's choice, knowledges and experiences. In this study, RSET calculation methods by six designers respectively were analysed from the thirteen reports of real performance based design projects conducted in Busan for a last five years. In particular, the Response Time calculation methods which have the most powerful effect for figuring the RSET are compared with the other designer's to deduce an error value.

Energy and Delay-Efficient Multipath Routing Protocol for Supporting Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 다중 경로 라우팅 프로토콜)

  • Lee, Hyun Kyu;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.447-454
    • /
    • 2016
  • The research on multipath routing has been studied to solve the problem of frequent path breakages due to node and link failures and to enhance data delivery reliability in wireless sensor networks. In the multipath routing, mobile sinks such as soldiers in battle fields and rescuers in disaster areas bring about new challenge for handling their mobility. The sink mobility requests new multipath construction from sources to mobile sinks according to their movement path. Since mobile sinks have continuous mobility, the existing multipath can be exploited to efficiently reconstruct to new positions of mobile sinks. However, the previous protocols do not address this issue. Thus, we proposed an efficient multipath reconstruction protocol called LGMR for mobile sinks in wireless sensor networks. The LGMR address three multipath reconstruction methods based on movement types of mobile sinks: a single hop movement-based local multipath reconstruction, a multiple hop movement-based local multipath reconstruction, and a multiple hop movement-based global multipath reconstruction. Simulation results showed that the LGMR has better performance than the previous protocol in terms of energy consumption and data delivery delay.

A Study on Emergency Evacuation Route Planning and USN-Based Induction Activities of Correctional Facilities (교정시설의 비상시 피난경로계획 및 USN기반 대피유도활동에 관한 연구)

  • Park, Joo-Hyung;Park, Jong-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.39-46
    • /
    • 2011
  • In correctional facilities with majority of occupants in custody, the safe evacuation guide without getaway accidents should be very important due to complexity in escape paths. Fire causes are various in correctional facilities, for example, arson fire is a major cause in mental treatment facilities, however, old facilities or carelessness of flammable materials consist of fire causes in jail facilities. Both types of correctional facilities are the same in terms of many casualties from the fire cases. The thesis focus on escape paths and evacuation guide plans on the basis of analysis on fire cases and structural vulnerability, and then an electronic unlocking system is concededly installed for safe evacuation of occupants in custody without getaway accidents. Especially, the effect of the electronic unlocking system is going to be analyzed on the basis of RSET (required safe egress time) in order to realize for the occupants to evacuate safely to the front yard in case of emergency. In conclusion, if electronic security allowed system with USN (Ubiquitous Sensor Networks) technology should be installed in multi-storey correctional buildings, it is proposed that the occupants in custody might be a guided safely without getaway trials.

Analysis of the Evacuation Safety in a Fire at Welfare Center for Disabled (장애인복지관 화재 시 피난안전성 분석)

  • Park, Sunah;Lee, Jai Young
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.315-322
    • /
    • 2021
  • This study analyzes the Required Safe Egress Time (RSET), in the event of a fire at a welfare center for the disabled, using the emergency passage according to the floor arrangement of users to evaluate the safety and the difference in RSET for each emergency passage using the Pathfinder simulation program to suggest an efficient evacuation method. As a result of RSET, it was found that there is no problem in evacuation safety for the current state of the facility's personnel allocation by satisfying the standard RSET in case of fire, and evacuation can be completed safely by evacuating through stairs rather than using elevators if possible. It is necessary for employees to be provided sufficient education and training in advance so that they can evacuate effectively with the disabled in case of fire. This study gives significance in saving many precious lives and safely evacuate in case of fire as evacuation routes were secured through the design, construction and operation of facilities for the disabled and the RSET was shortened through regular evacuation practices. It is necessary to discuss the further RSET studies based on the automatic fire shutters open or not when a fire occurs at a specific location following the installation of automatic fire shutter at the entrance of each floor of the facilities.

Research on Digital twin-based Smart City model: Survey (디지털 트윈 기반 스마트 시티 모델 연구 동향 분석)

  • Han, Kun-Hee;Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.172-177
    • /
    • 2021
  • As part of the digital era, a digital twin that simulates the weak part of a product by performing a stress test that reduces the lifespan of some expensive equipment that cannot be done in reality by accurately moving the real world to virtual reality is being actively used in the manufacturing industry. Due to the development of IoT, the digital twin, which accurately collects data collected from the real world and makes it the same in the virtual space, is mutually beneficial through accurate prediction of urban life problems such as traffic, disaster, housing, quarantine, energy, environment, and aging. Based on its action, it is positioned as a necessary tool for smart city construction. Although digital twin is widely applied to the manufacturing field, this study proposes a smart city model suitable for the 4th industrial revolution era by using it to smart cities and increasing citizens' safety, welfare, and convenience through the proposed model. In addition, when a digital twin is applied to a smart city, it is expected that more accurate prediction and analysis will be possible by real-time synchronization between the real and virtual by maintaining realism and immediacy through real-time interaction.

Analysis on dam operation effect and development of an function formula and automated model for estimating suitable site (댐의 운영효과 분석과 적지선정 함수식 및 자동화 모형 개발)

  • Choo, Taiho;Kim, Yoonku;Kim, Yeongsik;Yun, Gwanseon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • Intake ratio from river constitutes about 31% (8/26) that beings to "water stress country" as "Medium ~ High" with China, India, Italy, South Africa, etc. Therefore, the present study on a dam that is the most effective and direct for securing water resources has been performed. First of all, climate change scenarios were investigated and analyzed. RCP 4.5 and 8.5 with 12.5 km grid resolution presented in the IPCC (Intergovernmental Panel on Climate Change) 5th Assessment Report (AR5) were applied to study watershed using SWAT (Soil and Water Assessment Tool) and HEC-ResSim models that carried out co-operation. Based on the results of dam simulation, the reduction effects of floods and droughts were quantitatively presented. The procedures of dam projects of the USA, Japan and Korea were investigated. As a result, there are no estimating quantitative criteria, calculating methods or formulas. In the present study, therefore, indexes for selecting suitable dam site through literature investigation and analyzing dam watersheds were determined, Expert questionnaire for various indexes were performed. Based on the above mentioned investigation and expert questionnaire, a methodology assigning weight using AHP method were proposed. The function of suitable dam (FSDS) site was calibrated and verified for four medium-sized watersheds. Finally, automated model for suitable dam site was developed using FSDS and 'Model builder' of GIS tool.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.