• Title/Summary/Keyword: 재굴착

Search Result 230, Processing Time 0.024 seconds

Field Applicability Assessment of Controlled Low Strength Material for Sewer Pipe using Excavated Soil (굴착토를 활용한 유동화 채움재의 현장 적용성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.349-357
    • /
    • 2019
  • Controlled low strength material(CLSM) has been developed using variety of material such as excavated soil, industrial by-product and industrial waste. But theses research limited at laboratory test and failed at commercialization. So in this paper evaluates CLSM used excavated soil characteristics such as flowability, bleeding rate, early strength for following process and 28day strength for re-excavatability. Also, various mix proportion of CLSM by water-binder ratio and soil-binder ratio were evaluated in laboratory. And derive the optimized CLSM mix proportion for using at field application test by movable batch plant. After applying CLSM at trench, evaluate core sample strength and excavatability by shovel, pickax and excavator for verify re-excavation. Furthermore, measure the level change after casting CLSM to inspect subsidence stability. As results of these assessments, not only confirmed the characteristics of CLSM at field but the fillability around pipe and subsidence stability.

Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation (터널굴착용 투입형 연마재 워터젯 시스템의 연마재 투입량과 유동성에 미치는 영향 인자)

  • Joo, Gun-Wook;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • A new rock excavation method using an abrasive waterjet system is under development for efficiently creating tunnels and underground spaces in urban areas. In addition, an appropriate abrasive flow rate and abrasive flow quality are important for the new rock excavation (cutting) method using an abrasive waterjet system. This study evaluated the factors influencing the abrasive flow rate and abrasive flow quality, specifically the abrasive pipe height, length, tortuosity and inner diameter, through experimental tests. Based on the experimental test results, this study suggested optimal conditions for the abrasive flow rate and abrasive flow quality. The experimental results can be effectively utilized as baseline data for rock excavation methods using an abrasive waterjet system in various construction locations such as tunnels near urban surroundings, utility tunnels, and shafts.

Development of Decision Model and Management System to minimize Pavement Utility Cut for Road Facility (도로시설 재굴착 방지를 위한 의사결정모델 및 관리시스템 개발)

  • Cho, Jin-Young;Jang, Oun-Sung;Lee, Min-Jae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.164-171
    • /
    • 2013
  • In urban planning, road facility is used not only for the transportation purpose but also for the utility line space purpose such as electrical, gas, tele communication, heating, water, sewer, and so on. However, since these utilities are built by many different groups, it becomes very difficult to communicate each other. Delay in one party can cause another party's schedule delay but they don't commuicate often. Also, some delay in utility work can cause frequent pavement cut. And, this will impact on construction cost, schedule delay, low quality, user complain and cost. This study developed spatiotemporal decision model to prevent prequent utility cut for mega project such as new urban development project. In addition, this study developed utility cut management system to manage utility cut schedule under pavement. Finally, developed system was applied to new urban development project and verified there effectiveness.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Numerical Analysis of Retaining Wall Considering Supporting Load of Adjacent Retaining Wall (인접 흙막이 구조물의 지보재 하중을 고려한 가시설의 수치해석)

  • Yoo, Chanho;You, Jaemin;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • Recently, as the building construction works have been activated, the environment in which the excavation work is proceeding in parallel with the existing structure and the adjacent excavation work is increasing. However, there is not a lot of research on this. In this study, numerical analysis was carried out for interaction analysis between former excavation construction and follow-up excavation on two excavation retaining structures in parallel with excavation. As a result of numerical analysis, if the supporting load of strut is not considered, it was analyzed that the displacement distribution in the structure can be underestimated and acting stress of strut is overestimated. It was analyzed that the support stress causes by the former excavation should be considered in order to simulate the actual behavior characteristic.

Effect of abrasive waterjet parameters on rock removal (연마재 워터젯 변수가 암석제거에 미치는 영향)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.421-435
    • /
    • 2012
  • Rock excavation (removal) tests are performed with effective parameters using an abrasive waterjet. For verification of the field rock excavation capabilities, the removal performance and level of efficiency are analyzed for hard granite rock in terms of the water pressure, exposure time of the jet, and the standoff distance. In particular, experimental tests are performed with a long standoff distance required condition in the real excavation field. The rock removal performance level changes according to the rock properties. In this study, various rock specimens are used and P-wave velocities are measured in order to determine the correlation between the removal performance and the P-wave velocity. As a result of the experimental study, the effect of waterjet parameters on rock removal is analyzed.

A study on the effect of support structure of steel rib in partitioning excavation of tunnel (터널 상·하반 분할 굴착 시 강지보재 지지구조 효과에 대한 연구)

  • Kim, Ki-Hyun;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Choi, Yong-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.543-561
    • /
    • 2020
  • This paper is the result of the study on the effect of the support structure of the tunnel steel rib. In tunnel excavation, the top and bottom half excavation methods result in subsidence of steel rib reinforcement due to insufficient support of steel rib reinforcement when the ground is poor after excavation. The foundation of the steel rib installed in the upper half excavates the bottom part of the base, causing the subsidence to occur due to various effects such as internal load and lateral pressure. As a result, the tunnel is difficult to maintain and its safety is problematic. To solve these problems, steel rib support structures have been developed. For the purpose of verification, the behavior of the supporting structure is verified by model experiments reduced to shotcrete and steel rib material similarity, the numerical analysis of ΔP and ΔP generated by bottom excavation by Terzaghi theoretical equation. As a result, it was found that the support structure of 20.100~198.423 kN is required for the 10~40 m section of the depth for each soil of weathered soil~soft rock. In addition, as a result of the reduced model experiment, a fixed level of 50% steel rib deposit of steel rib support structure was installed. The study shows that the installation of steel rib support structures will compensate for uncertainties and various problems during construction. It is also thought that the installation of steel rib support structure will have many effects such as stability, economy, and air reduction.

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.

Properties of Controlled Low-Strength Material Containing Bottom Ash (Bottom Ash를 혼합한 저강도 고유동 충전재의 특성)

  • 원종필;이용수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.294-300
    • /
    • 2001
  • The effectiveness of bottom ash on the mechanical and physical properties of Controlled Low-Strength Material(CLSM) is investigated in this study, CLSM is defined by the ACI Committee 229 as a cementitious material that is in a flowable state at the time of placement and having a specified compressive strength of 83 kgf/$\textrm{cm}^2$ or less at the age of 28 days. This study was undertaken on the use of bottom ash as a fine aggregate in CLSM. Four different levels of bottom ash with fly ash contents, 25%, 50 %, 75%, 100%, are investigated. Laboratory test results conclude that inclusion of bottom ash increases the demand for mixing water in obtaining the required flow. However, the sand was reduced because it was adjusted to maintain a constant total volume. Miかe proportions were developed for producing CLSM at three 28-day strength levels: removal with tools (less than 7 kgf/$\textrm{cm}^2$), mechanical means (less than 20 kgf/$\textrm{cm}^2$), and power equipment (less than 83 kgf/cm\`). The physical and mechanical properties supports the concept that by-product bottom ash can be successfully used in CLSM.