• Title/Summary/Keyword: 장애물 분할

Search Result 49, Processing Time 0.022 seconds

Detection of Nearest Points without Obstacle Segmentation using Active Min-Depth Filter (Active Min-Depth Filter를 이용한 비분할 장애물 최근접 점 검출)

  • Kyung-Kyoon Park;Mun-Ho Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 2023
  • In autonomous robots, obstacle avoidance is a key feature. Potential Field is the most widely used method in this field. Such method requires real-time calculation of the nearest point of the obstacle from the robot, which involves difficulty of reliably segmenting the obstacle region from the distance sensor data profile. In this paper, Active Min-Depth Filter is introduced to obtain the nearest point of each obstacle using real-time calculation but without segmentation. Through simulations on various sensor noise environments, the robustness of the Active Min-Depth Filter could be confirmed, and successful results were obtained by applying real-world moving robots.

Expansion of Motion Planning Algorithms by Cell-Decomposition (셀-분할 방식에 의한 운동계획 알고리즘의 확장)

  • 안진영;유견아
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.887-889
    • /
    • 2003
  • 사다리꼴-분할 방식은 로봇 경로 계획 알고리즘 중 완전 셀-분할 방식중의 하나로서 장애물과 떨어진 경로를 제공하므로 안정성을 제공하는 방식이다. 사다리꼴-분할 방식은 다각형 환경으로 이루어진 형상공간에서 정의되며 자유공간을 볼록 다각형으로 이루어진 셀(cell)로 나누어 로봇 운동을 계획하는데, 원과 같은 비다각형 장애물이 존재하는 경우에 대해서는 이 성질을 만족하는 분할 방법이 알려져 있지 않다. 본 논문에서는 기존의 다각형 환경에서 정의된 사다리꼴-분할 방식을 분할의 완전성을 잃지 않고 원의 호를 포함하는 환경으로 확장하는 알고리즘을 소개하고 구현한다.

  • PDF

Classification of Obstacle Shape for Generating Walking Path of Humanoid Robot (인간형 로봇의 이동경로 생성을 위한 장애물 모양의 구분 방법)

  • Park, Chan-Soo;Kim, Doik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

Comparison of detection rates Area sensors and 3D spatial division multiple sensors for detecting obstacles in the screen door (스크린도어의 장애물 검지를 위한 Area센서와 다중공간분할 3D센서의 검지율 비교 분석)

  • Yoo, Bong-Seok;Lee, Hyun-Su;Jin, Ju-Hyun;Kim, Jong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.561-566
    • /
    • 2016
  • A subway platform is equipped with screen doors in oder to avoid accidents of passengers, where Area sensors are installed for detecting obstacles in the screen doors. However, there exist frequent operating errors in screen doors due to dusts, sunlight, snow, and bugs. It is required to develope a detection device which reduces errors and elaborates detection function. In this paper, we compared the detection rates of the Area sensor the 3D sensor using CCTV-based image data with installing sensors at the screen door in Munyang station Daegu, where 3D sensor is applied with the space division multiple detection algorithms. It is measured that the detection rate of 3D sensor and Area sensor is approximately 89.61% and 78.88%, respectively. The results confirmed that 3D senor has higher detection rate compared with Area sensor with the rate of 6.87~9.79%, and 3D sensor has benefit in the aspect of installation fee.

A study on Simple and Complex Algorithm of Self Controlled Mobile Robot for the Obstacle Avoidance and Path Plan (자율 이동로봇의 장애물 회피 및 경로계획에 대한 간략화 알고리즘과 복합 알고리즘에 관한 연구)

  • 류한성;최중경;구본민;박무열;권정혁
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.115-123
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance and path plan. One is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of TMS320F240 digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until 95 percent filled screen from input image. And the robot recognizes obstacle about 95 percent filled something, so it could avoid the obstacle and conclude new path plan. Another is complex algorithm that image preprocessing by edge detection, converting, thresholding and image processing by labeling, segmentation, pixel density calculation.

A Basic Study of Obstacles Extraction on the Road for the Stability of Self-driving Vehicles (자율주행 차량의 안전성을 위한 도로의 장애물 추출에 대한 기초 연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.9 no.2
    • /
    • pp.46-54
    • /
    • 2021
  • Recently, interest in the safety of Self-driving has been increasing. Self-driving have been studied and developed by many universities, research centers, car companies, and companies of other industries around the world since the middle 1980s. In this study, we propose the automatic extraction method of the threatening obstacle on the Road for the Self-driving. A threatening obstacle is defined in this study as a comparatively large object at center of the image. First of all, an input image and its decreased resolution images are segmented. Segmented areas are classified as the outer or the inner area. The outer area is adjacent to boundaries of the image and the other is not. Each area is merged with its neighbors when adjacent areas are included by a same area in the decreased resolution image. The Obstacle area and Non Obstacle area are selected from the inner area and outer area respectively. Obstacle areas are the representative areas for the obstacle and are selected by using the information about the area size and location. The Obstacle area and Non Obstacle area consist of the threatening obstacle on the road. Through experiments, we expect that the proposed method will be able to reduce accidents and casualties in Self-driving.

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

UAV Path Planning based on Deep Reinforcement Learning using Cell Decomposition Algorithm (셀 분해 알고리즘을 활용한 심층 강화학습 기반 무인 항공기 경로 계획)

  • Kyoung-Hun Kim;Byungsun Hwang;Joonho Seon;Soo-Hyun Kim;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.15-20
    • /
    • 2024
  • Path planning for unmanned aerial vehicles (UAV) is crucial in avoiding collisions with obstacles in complex environments that include both static and dynamic obstacles. Path planning algorithms like RRT and A* are effectively handle static obstacle avoidance but have limitations with increasing computational complexity in high-dimensional environments. Reinforcement learning-based algorithms can accommodate complex environments, but like traditional path planning algorithms, they struggle with training complexity and convergence in higher-dimensional environment. In this paper, we proposed a reinforcement learning model utilizing a cell decomposition algorithm. The proposed model reduces the complexity of the environment by decomposing the learning environment in detail, and improves the obstacle avoidance performance by establishing the valid action of the agent. This solves the exploration problem of reinforcement learning and improves the convergence of learning. Simulation results show that the proposed model improves learning speed and efficient path planning compared to reinforcement learning models in general environments.

A Study on the extraction of activity obstacles to improve self-driving efficiency (자율주행 효율성 향상을 위한 활동성 장애물 추출에 관한 연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.71-78
    • /
    • 2021
  • Self-driving vehicles are increasing as new alternatives to solving problems such as human safety, environment and aging. And such technology development has a great ripple effect on other industries. However, various problems are occurring. The number of casualties caused by self-driving is increasing. Although the collision of fixed obstacles is somewhat decreasing, on the contrary, the technology by active obstacles is still insignificant. Therefore, in this study, in order to solve the core problem of self-driving vehicles, we propose a method of extracting active obstacles on the road. First, a center scene is extracted from a continuous image. In addition, it was proposed to extract activity obstacles using activity size and activity repeatability information from objects included in the center scene. The center scene is calculated using region segmentation and merging. Based on these results, the size of the frequency for each pixel in the region was calculated and the size of the activity of the obstacle was calculated using information that frequently appears in activity. Compared to the results extracted directly by humans, the extraction accuracy was somewhat lower, but satisfactory results were obtained. Therefore, it is believed that the proposed method will contribute to solving the problems of self-driving and reducing human accidents.

Development of a Navigation Control Algorithm for Mobile Robots Using D* Search and Fuzzy Algorithm (D* 서치와 퍼지 알고리즘을 이용한 모바일 로봇의 충돌회피 주행제어 알고리즘 설계)

  • Jung, Yun-Ha;Park, Hyo-Woon;Lee, Sang-Jin;Won, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, we present a navigation control algorithm for mobile robots that move in environments having static and moving obstacles. The algorithm includes a global and a local path-planning algorithm that uses $D^*$ search algorithm, a fuzzy logic for determining the immediate level of danger due to collision, and a fuzzy logic for evaluating the required wheel velocities of the mobile robot. To apply the $D^*$ search algorithm, the two-dimensional space that the robot moves in is decomposed into small rectangular cells. The algorithm is verified by performing simulations using the Python programming language as well as by using the dynamic equations for a two-wheeled mobile robot. The simulation results show that the algorithm can be used to move the robot successfully to reach the goal position, while avoiding moving and unknown static obstacles.