In this paper, we propose a new method for on-line genre classification using spectrogram and deep neural network. For on-line processing, the proposed method inputs an audio signal for a time period of 1sec and classifies its genre among 3 genres of speech, music, and effect. In order to provide the generality of processing, it uses the spectrogram as a feature vector, instead of MFCC which has been widely used for audio analysis. We measure the performance of genre classification using real TV audio signals, and confirm that the proposed method has better performance than the conventional method for all genres. In particular, it decreases the rate of classification error between music and effect, which often occurs in the conventional method.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.7
/
pp.842-848
/
2020
Music markets have entered the era of streaming. In order to select and propose music that suits the taste of music consumers, there is an active demand and research on an automatic music genre classification system. We propose a method to improve the accuracy of genre unclassified songs, which was a lack of the previous system, by using a generative adversarial network (GAN) to further develop the automatic voting system for deep learning music genre using Softmax proposed in the previous paper. In the previous study, if the spectrogram of the song was ambiguous to grasp the genre of the song, it was forced to leave it as an unclassified song. In this paper, we proposed a system that increases the accuracy of genre classification of unclassified songs by converting the spectrogram of unclassified songs into an easy-to-read spectrogram using GAN. And the result of the experiment was able to derive an excellent result compared to the existing method.
Genres and actions of stories can be used to classify stories, and used effectively as well for visualizing story properties. This paper proposes a Genre-Action coordinate system for visualizing story property data in 2-dimension that has similarities between the genre and action items along the axes, i.e. a property of spatial continuum. With the proposed Genre-Action coordinate system we found that the genre and action items in the axes are arranged according to their similarities and we were able to achieve a spatially meaningful visualization of story properties where the related data form clusters.
Proceedings of the Korea Contents Association Conference
/
2018.05a
/
pp.97-98
/
2018
재즈 연주자들이 음반에 많이 녹음한 재즈 스탠더드 곡을 대상으로 레퍼토리의 장르를 분류하여 선정한 곡을 중심으로 다른 버전의 편곡 특성을 연구한다. 레퍼토리 곡은 재즈 스탠더드 원곡에서 블루스, 스윙, 발라드, 비밥, 라틴의 5가지 장르로 분류되며, 대부분 발라드와 스윙이다. 레퍼토리의 곡 분류를 통해 같은 곡이 다른 버전에서 어떻게 다르게 연주되었는지 보기위해 여성 재즈보컬들에 의해 녹음된 음반을 중심으로 각 버전의 특징을 분석한다. 이 연구를 수행하여 각 여성 재즈 보컬들의 녹음된 곡에서 다른 버전의 편곡 특성을 도출한다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.9
/
pp.4212-4217
/
2013
Since genre of popular music began to classified, Alternative Music has been music form with most complex and diverse sub genre. This paper focused on mostly Alternative Rock, which began to attract attention since the 1990's, and analysed the cause for ambiguity of this genre. Therefore we can examine the inevitable limitation of traditional - based on musical form only - classification.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.90-91
/
2016
본 논문에서는 스펙트로그램을 이용한 딥 러닝 기반의 오디오 장르 분류 기술을 제안한다. 기존의 오디오 장르 분류는 대부분 GMM 알고리즘을 이용하고, GMM의 특성에 따라 입력 성분들이 서로 직교한 성질을 갖는 MFCC를 오디오의 특성으로 사용한다. 그러나 딥 러닝을 입력의 성질에 제한이 없으므로 MFCC보다 가공되지 않은 특성을 사용할 수 있고, 이는 오디오의 특성을 더 명확히 표현하기 때문에 효과적인 학습을 할 수 있다. 본 논문에서는 딥 러닝에 효과적인 특성을 구하기 위하여 스펙트로그램(spectrogram)을 사용하여 오디오 특성을 추출하는 방법을 제안한다. 제안한 방법을 사용한면 MFCC를 특성으로 하는 딥 러닝보다 더 높은 인식률을 얻을 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.29-30
/
2017
본 논문에서는 인간의 청각 기관을 모델링 한 스파이크그램 (spikegram)을 이용한 심층 신경망 기반의 음악 장르 분류 기술을 제안한다. 분류 대상은 GTZAN 데이터 세트의 10개 장르로 정의한다. 본 논문에서는 청각 기관의 인식 방법을 모델링한 방법을 이용하여 스파이크그램을 구하고, 스파이크그램에서 새로운 특성 벡터를 추출하는 방법을 제안한다. 제안하는 방법을 통해 심층 신경망에 적합한 특성 벡터를 구하고 이렇게 구한 특성 벡터로 신경망을 학습시켜 기존에 사용하던 다양한 방법들보다 높은 성능을 얻을 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.925-927
/
2014
최근 멀티미디어 데이터의 핵심이 되는 음악 데이터가 매우 중요한 관심이 되고 있다. 멀티미디어 데이터 가운데서도 음악 데이터의 중요성이 높아지고 있는데 방대한 음악 데이터를 분류하는 것은 중요하다. 본 논문에서는 음악 데이터를 효과적으로 분류하기 위하여 화음의 다양한 정보를 저장하는 데이터 구조를 제안하고 각 장르별 고유한 화음 진행의 특징을 제시한다. 또한, 그 중 화음을 저장하는 데이터만을 추출하여 장르별 화음진행 특성에 기반 하여 3가지 음악 장르를 분류 할 것이다.
In this paper, we propose a new automatic taxonomy generation algorithm for the audio genre classification. The proposed algorithm automatically generates hierarchical taxonomy based on the estimated classification accuracy at all possible nodes. The estimation of classification accuracy in the proposed algorithm is conducted by applying the training data to classifier using k-fold cross validation. Subsequent classification accuracy is then to be tested at every node which consists of two clusters by applying one-versus-one support vector machine. In order to assess the performance of the proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigated classification performance using the proposed algorithm and previous flat classifiers. The classification accuracy reaches to 89 percent with proposed scheme, which is 5 to 25 percent higher than the previous flat classification methods. Using low-dimensional feature vectors, in particular, it is 10 to 25 percent higher than previous algorithms for classification experiments.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.1
/
pp.62-69
/
2015
This study examined the effects of the level of narrativity of a culture content on the level of preference of a related culture content. The culture contents were categorized into novels, cartoons and TV programs according to the content type, and into dramas, comedies, and actions by the contents genre because previous studies found a high level of narrativity in novels and dramas. Based on the survey data on the movie preference, the following were found. First, when people prefer novels with high-level narrativity, rather than TV programs, which have low-level narrativity in a certain genre, they prefer watching movies in the same genre. Second, this relationship is even more reinforced when the genre of the original of the movie is drama, which has high-level narrativity, rather than comedies or actions, which have low-level narrativity. Narrativity plays an important role in the movie preference, especially when it comes to movie originals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.