• Title/Summary/Keyword: 장대 터널

Search Result 165, Processing Time 0.025 seconds

A study on the estimation of safety in long railway tunnel (장대 철도터널에서의 방재 안전성 평가에 관한 연구)

  • Kim, Young-Geun;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.287-298
    • /
    • 2007
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures get longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest on safety in long tunnel has been growing and the safety standard for long tunnels is tightening. For that reason, at the planning stage of a long tunnel, the optimum design of safety facility for minimizing the risks and satisfying the safety standard is required. For the reasonable design of a long railway tunnel considering high safety, qualitative estimation for tunnel safely is required. In this study, QRA (Quantitative Risk Analysis) technique is applied to design of a long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design was carried out to verify the QRA technique for two railway tunnels.

  • PDF

A Study on the Traffic Accident Characteristics Analysis in Expressway Longitudinal Tunnel using a Logit Model (로짓모형을 이용한 고속도로 장대터널 교통사고 특성분석에 관한 연구)

  • Seo, Im-Ki;Park, Je-Jin;AhnNam, Byung-Ho;Lee, Jun-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.549-556
    • /
    • 2012
  • Longitudinal tunnels are defined as tunnels with length of over 1km. Because of Korea's topographical conditions and as safety measures for linear design, many tunnels are inevitably being constructed in Korea. The number of longitudinal tunnels constructed on expressways amounted to 104 as of the end of 2010 with a total length of 192km. Given the increasing demand for tunnels and the increasing length of tunnels, a safety evaluation of longitudinal tunnels needs to be conducted. As such, this study selected design elements, transportation environment and delineation system as elements to check and tried to determine factors influencing road crashes. For this, tunnels have been classified based on history of crashes; ones with crashes and ones without crashes and statistically meaningful explanatory variables were selected. By using these variables, a logit model was development in order to better grasp the factors that directly and strongly influence crashes. The result, related to crashes as well as the analysis were utility tunnel interior materials of driving lane and passing lane, which are related to driver's visibility, lateral width widening to consolidate space in a tunnel, and annual average daily traffic (AADT) per lane. These results may be used in the future as analysis indicators when drawing up plans to prevent crashes in longitudinal tunnels.

Safe tunneling method using numerical modeling of rock blocks in long tunnels (장대터널에서의 암반 블록의 수치 모델링을 이용한 터널 안전 시공법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Since about 70 percent of the territory is mountainous, more tunnels are constructed in Korea for maximizing the development efficiency. With the increasing number of tunnel construction, safe construction in tunnels has been emerged as the utmost important subject. Recently, the number of long tunnel construction is steeply increased because of the request for high speed and straight road. In this study, a safe tunneling method using numerical modeling of rock blocks in long tunnels is proposed, and then applied to the long tunnel based on real discontinuity information observed in situ. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the safe tunneling method using numerical modeling of rock blocks. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports.

Calculation of the Normal Operation Rate of Monitoring Hardware in the Long Tunnels of High-Speed and Urban Railways (고속 철도와 도시철도 장대터널 계측기기의 정상 작동율 산정 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.80-90
    • /
    • 2022
  • Purpose: The objective of this study was to improve smart monitoring and monitoring management technology in long tunnels by investigating and analyzing the normal operation rates of monitoring hardware in the long tunnels of high-speed and urban railways. Method: This study evaluated, analyzed, and compared the normal operation rate of 6-8 types of monitoring hardware for each long tunnel, targeting three high-speed railway lines with a long tunnel (i.e., Suseo-Pyeongtaek Line, Gyeongbu Line, and Honam Line) and two urban railway groups with a long tunnel (i.e., Seoul Metro Lines 5, 6, and 7, and 9). Result: The rank of the normal operation rate of monitoring hardware was in the order of Suseo-Pyeongtaek High-Speed Railway (92.1%), Seoul Metro Lines 5, 6, and 7 (85.8%), Seoul Metro Line 9 (85.2%), Gyeongbu High-speed Railway (80.5%), and Honam High-speed Railway (46.7%). Conclusion: The mean normal operation rate of the monitoring hardware in the three high-speed railway long tunnels was 83.4%, and that of the two urban railway long tunnels was 85.5%, indicating that the deviation between them was small. The mean normal operation rate of the monitoring hardware in the long tunnels of the five high-speed and urban railway lines was 84.2%.

시뮬레이션 기법을 이용한 장대터널의 제연기술

  • Kim, Dong-Seok
    • 방재와보험
    • /
    • s.111
    • /
    • pp.20-27
    • /
    • 2006
  • 피난길이가 긴 장대터널에서 화재가 발생되면 생성된 연기가 상승하고 천장을 만나 터널의 길이방향으로 전파된다. 연기의 독성가스에 의해 질식하게 되는 인명피해를 줄이기 위해서는 발생한 화재의 크기에 따라 제연유속이 필요하며, 제연 팬의 용량과 신뢰성을 확보해야 한다.

  • PDF

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

A case study of large - long tunnel using the charging mechanization system of the bulk emulsion explosives (Bulk Emulsion 기계화 장전시스템을 이용한 대단면 장대터널 시공사례연구)

  • Yoon, Ji-Sun;Jang, Young-Min;Lee, Sang-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.107-115
    • /
    • 2009
  • Lately, the length of tunnel, the number of large-long tunnel over three lanes are steeply increased because of the request for high speed and straight road. Therefore, the maximization of excavation efficiency is needed in tunnel construction. Bulk Emulsion explosives charging system is the spearhead equipment using the radio remote control $&$ mechanization system compare with a traditional method Cartridge type. This study introduced the bulk emulsion explosives which is new method in tunnel blasting and verified the efficiency of bulk emulsion explosives for long-large tunnel. And we tried to compare Cartridge type efficiency with bulk emulsion explosives efficiency by the field test.

Railway tunnel ventilation system design (철도터널 환기설계의 기초)

  • 신현준;유지오
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.6
    • /
    • pp.463-475
    • /
    • 1999
  • 산업과 생활수준의 향상에 따라서 도로나 철도 등의 기간산업에 대한 고속화 및 대용량화가 요구되고 있다. 특히 철도에 있어서는 선형의 직선화 및 복선화계획이 진행되면서 터널건설이 증가하고 장대터널이 요구되고 있는 실정이다. 이에 따라 철도터널의 환기 및 방재 시스템의 설계기법에 관심이 고조되고 있으나 현재의 국내 철도 터널은 대부분 오래 전에 건설된 것이며 또한 환기설비를 요구할 만큼의 장대터널이 없기 때문에 이를 고려하지 않고 있다. 그래서 국내의 철도터널 환기설계 기술은 미약한 상태로 현재 발주되는 대부분의 공사를 외국의 용역사의 설계에 의존하고 있는 실정이다.

  • PDF

Suggestion on the Optimal Length of Long Tunnels Considering Traffic Safety Characteristics (교통안전 특성을 고려한 장대터널 적정길이 제시)

  • Kim, Joong-Hyo;Lee, Jeong-Hwan;Kwon, Sung Dae;Ha, Dong Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.203-211
    • /
    • 2014
  • Tunnel reduces travel time as and it is essential facilities for the eco-friendly road construction. In recent years, It has been accelerating the tunnel construction to provide a higher level of traffic service but a driver driving in the narrow and dark tunnel takes characteristically psychological anxiety and the restriction of the sight. Moreover, A driver passing through more than 1,000m long tunnel, as to pass inside the monotonous form of the tunnel for a long time can cause drowsiness and increase the driver load. This driver load can degrade road-holding of the inside of the long tunnel highly and pose a high risk of accidents. Accordingly, In this study is to present the proper length of the Tunnel, considering the characteristics of traffic accident. For this, this study is that the long tunnel that affects traffic safety traffic safety variables are selected and classified. Traffic safety variables are classified in detail as a variable of the traffic accident and velocity one, the applicable variables the number of the traffic accident, the ratio of the traffic accident, driving velocity, the individual vehicle velocity etc. Traffic safety variables are categorized as more than a pole length of the tunnel in order to examine its impact on correlation analysis. The results indicate significant results in traffic accidents in accordance with traffic accidents, traffic safety, selects the variable was Variable depending on the length of the tunnel traffic safety point of significantly increasing the possibility of an accident can be seen as a high point. And the point of the Distribution of selected variables in order to create a traffic safety was a significant increase in traffic safety variables was set at critical intervals. Before reaching the critical point and the corresponding length of the long tunnel was set at the proper length. In this study, the optimum length of the proposed long tunnel through the long tunnel that occur in the future to contribute to reducing traffic accidents would be able to be determined.

Analyzing drivers' visual response variation in very long expressway tunnel ; the Yuksimnyeong tunnel (장대터널에서의 운전자 시각각성변화 분석연구 (육십령터널을 대상으로))

  • Kim, Ju-Yeong;Kim, Hyeon-Jin;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • This research analyzed the changes of drivers' visual workload with beta wave of bionic signals from brain's occipital lobe from entrance to exit section of the Yuksimnyeong tunnel which is 3.1km long in Daejeon-Tongyeong section of Jungbu expressway. There are 10 subjects who Participate our experiments and the results are as follows. First. the drivers' visual workload is higher about 41% in entrance section of the tunnel than 200m in advance of the section of the tunnel. Second, it is higher than 200m in advance of the section of the tunnel by 34.5% that the value of the drivers' visual workload who is driving in the tunnel. Third, as a result of analyzing the tunnel into 200m unit section, it is statistically different from other sections' at the 1.0km and 2.4km section from the entrance of the tunnel. If drivers sustain average visual workload for safe driving in very long tunnel, it's not desirable environment that drivers' visual workload goes under the average workload. Therefore, it would be the section where drivers who is driving in tunnel could cause a traffic accident.