• Title/Summary/Keyword: 장대교량 거동

Search Result 51, Processing Time 0.017 seconds

Flexural Experiment of PSC-Steel Mixed Girders and Evaluation for Analyses on Tangentional Stiffness of Connection (프리스트레스트 콘크리트-강 혼합거더의 휨 실험 및 경계면 수평계수 분석)

  • Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook;Yoo, Sung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • This study was performed to evaluate joint behavior of prestressed concrete(PSC)-steel mixed girders through the flexural test of 14 beams according to embedded length, amount of reinforcing steel, stud arrangement, and prestressing force. All test beams were failed by turns of desertion of reinforcing steel, stud, and steel plate. From test results, prestressing force was more effective on performance of connection than stud arrangement and reinforcing steel. And the spacing of stud is also more effective than embedding length. This paper also presented 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-steel mixed girders. According to the slip modulus, the nonlinear analysis showed that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results showed that the PSC-steel hybrid girders with shear connectors took the part of partial composite action in ultimate load stage. In addition, it was founded that stud shear connectors and welded reinforcements were contributed to improve the ultimate strength of hybrid girders for about 20%.

A Study on the Static and Fatigue Behavior of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 정적 및 피로거동)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Lee, Sang Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.725-736
    • /
    • 2004
  • A new type of girder, called steel-confined prestressed concrete girder (SCP girder), has been developed, which maximizes the structural advantages of concrete, steel, and PS tendon, and improves on the shortcomings of steel plate girder, PSC I-girder, and preflex girder bridge for use in the construction of middle- or long-span bridges. To verify the propriety of design, structural safety, and applicability of this girder, a static load test was carried out (Kim et al.., 2002). Since the main damage typically sustained by steel bridges results from the fatigue caused by the repetition of traffic loads, fatigue safety must therefore be guaranteed in applying the SCP girder in the construction of real bridges. In this study, a fatigue test was carried out to investigate fatigue behavior and provide basic data for fatigue design. Based on the fatigue test, the fatigue safety of the girder was estimated. For the fatigue test, 10-m specimens were designed for a standard-design truckload (DB-24). A static load test was also performed before the fatigue test to analyze the structural behavior of the specimens. After the fatigue test, outer steel plates were removed to observe the condition of the concrete in the girder.

A Study on Base Isolation Performance of Magneto-Sensitive Rubbers (자기민감 고무를 이용한 구조물의 면진성능 연구)

  • Hwang, In-Ho;Lim, Jong-Hyuk;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.77-84
    • /
    • 2006
  • Recently, as large structures such as high-rise building and long span bridge become lighter and more flexible, the necessity of structural control for reducing excessive dynamic response due to seismic excitation is increased. In this study, a semi-active base isolation system using Magneto-Sensitive (MS) rubbers is proposed to effectively protect structures against earthquakes. MS Rubber is a class of smart controllable materials whose mechanical properties change instantly by the application of a magnetic field. To demonstrate the performance of this device, the MS Rubber isolation system is compared to Lead-Rubber Bearing (LRB) isolation systems and judged based on computed responses to several historical earthquakes. The MS Rubber isolation system is shown to achieve notable decreases in base drifts over comparable passive systems with no accompanying increase in base shears or in accelerations imparted to the superstructure. The proposed MS Rubber system is shown to perform better than the passive isolation system.

The Behaviour Characteristics of Reinforced Limestone Cavities by High Pressure Jet-Grouting (고압분사주입공법으로 보강된 석회암공동의 거동특성)

  • Hong, Won-Pyo;Hong, Kun-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.7-16
    • /
    • 2008
  • Limestone area have mostly certain geological defects such as the internal cavities due to melting and fractured zone by external pressures. Especially, in case of constructing grand bridge, the treatment of the limestone cavities area having the geological defects is inevitable. In order to reduce foundation settlement and to reinforce the ground in the limestone cavities area, high pressure jet grouting has been carried out as a countermeasure method. Despite the fact that high pressure jet grouting method has already adopted at a lot of limestone cavities area, but the amount of research and technical data on the high pressure jet grouting have not been accumulated properly so for. Therefore this paper intends to investigate the strength characteristics and deformation characteristics for reinforced limestone cavities area by high pressure jet grouting method. In addition, load carrying capacity obtained by static pile load test with load transfer measuring system is analyzed.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

An Analytical Study for Structural Behaviors of Unbonded Precast Rectangular Hollow Section Concrete Piers (비부착 프리캐스트 중공 사각 단면 교각의 구조거동에 관한 해석적 연구)

  • Choi, Seung-Won;Kim, Ick-Hyun;Cho, Jae-Yeo;Chang, Sung-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.61-69
    • /
    • 2010
  • Unbonded precast concrete piers have better seismic performances than conventional reinforced concrete piers. In this research, seismic performances of unbonded precast prestressed concrete piers are analyzed using OpenSEES. Main parameters of analysis are concrete strength, jacking force ratio, ratio of tendon, and size of precast segment. In results, as the ratio of tendon and jacking force ratio increase, the flexural strength increases at softening state and ultimate state. Concrete strength and size of precast segment are negligible. But initial jacking force ratio leads to early yielding of prestressing tendon. Since compressive strain in core concrete is much less than ultimate strain, it can be expected that the amount of transverse steel reinforcement is to be reduced in comparison with conventional reinforced concrete column.

Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구)

  • 배두병;공병승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2004
  • The use of the othotropic steel deck is steadily increased due to the advance of the technology in the steel bridges which recently have been longer. But the othotropic steel deck bridge is the structure that is very fragile to the fatigue, especially, the fatigue crack at the cross of the longitudinal rib and transversal rib is one of the biggest problems that othotropic steel deck bridges have. The causes of these fatigue cracks come from the secondary stress on out-plane behavior of transversal rib. In this study, we conducted the experiment to find the optimal details to improve fatigue strength on intersection between longitudinal rib and transversal rib in the othotropic steel deck bridge through numerical analysis using the experiment of the fatigue in the 3-dimensional real structure and program LUSAS. As a result of study, it is showed that the details of the korean standard section attached with a curved bulkhead plate is the most profitable. And, it is indicated that the stress which is generated when the reform improved section by parametic study can be reduced by about 50% at most or more. Along with the reduced stress and the longer interval between transversal ribs(G=400), the decreased steel amount by 4% and the shortened welding length by 34% make it possible to produce the othotropic steel deck bridge which is strong against fatigue.

Equivalent Shrinkage Strain For Steel-Concrete Composite Girder Bridges (합성거더교의 등가 건조수축 변형률)

  • Bae, DooByong;Jung, Dae Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.135-144
    • /
    • 2004
  • Since Modern bridges have a tendency to make the spans continuous and longer, the effect of concrete shrinkage and creep is very important and must be evaluated appropriately for the durability and safety of steel-concrete composite bridges. However, highway design specification in current use prescribes $180^{1\;2}$ as the final shrinkage strain. which is for less value than one resulted from many experimental researches and cause some problems in the construction of composite bridges due to the understimation of shrinkage strain. Thus, in this paper nonlinear analysis with time-steps applying the CEB-FIP(90) provision have been conducted for plate girder bridge, box girder bridge and Preflex beam bridge and the linear equivalent shrinkage strain for the design of composite bridges. which produces the stress equal to the values from the nonlinear analysis, has been calculated by comparing the results with the values following highway design specification. The results yield appropriately double values than $180^{1\;2}$ which highway design specification prescribes.

A Study on the Improvement of the Steel Pylon Base Design Using Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 기존 강재 주탑기부 설계의 개선방안 연구)

  • Jung, Soo-Hyung;Park, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2014
  • In this study nonlinear FEM analysis for steel pylon base of a cable supported bridge is performed in order to compare the results of Akashi-Kaikyo bridge's design specification established in 1970. Due to convenience of its application, the Akashi grand bridge's design specification has been applied to the base design of cable stayed bridges. It has been using linear spring in order to model prestressed high tensioned bars between steel pylon bottom plates and the base concrete. However, the results of nonlinear FEM analysis revealed that the Akashi-Kaikyo bridge's design specification has various problems in the analysis of the steel pylon base. And the steel pylon base has various complex members connecting with each other, and it is main member to resist against the wind load or the earthquake load. Therefore, the nonlinear FEM analysis has to be conducted in order to predict the behavior of steel pylon base exactly. Also, the nonlinear FEM analysis is more reasonable for the load and resistant factor design.

Wind Tunnel Aeroelastic Studies of Steel Cable-stayed Bridge with Wind Cable and Temporary Support (강 사장교 가설 중 임시 제진방법에 대한 풍동실험 연구)

  • Cho, Jae Young;Shim, Jong Han;Lee, Hak Eun;Kwon, O Whon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.33-45
    • /
    • 2006
  • Cable-stayed bridges are more inherently vulnerable to wind during the erection stages than when they are already being used. Even if a bridge that is already being used is aerodynamically stable, it is prone to having aerodynamic instabilities within the design wind speed during construction. Therefore, when the bridge's designers deliberate on the method they will use in constructing the bridge, they must likewise come up with a suitable plan to ensure the stability of the bridge during its erection (e.g., conducting a wind-tunnel investigation). This paper describes the aeroelastic full-bridge model tests that were conducted to investigate the aerodynamic behavior of the bridge during erection, with emphasis on aerodynamic stability and the mitigation of the buffeting response through temporary stabilization. The aerodynamic performance of a cable -stayed bridge with a main span of 50 m was studied in its completed stage and in two erection stages, corresponding 50% and 90% completion, respectively. In the 50% erection stage tests, a balanced cantilever configuration, with wind cable and temporary support at the tower, was conducted. The system that was determined to be most effective in reducing wind action on the bridge during construction was proposed in the paper, based on the results of the comparative study that was conducted.