• Title/Summary/Keyword: 장기 지형변화

Search Result 144, Processing Time 0.023 seconds

새만금 갯벌의 입자와 유기물질 특성

  • 유선재;김종구;조은일;안욱성
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.149-151
    • /
    • 2002
  • 서해안에 위치한 새만금은 연안 방조제 축조 공사로 인하여 환경변화를 야기할 수 있는데 이러한 환경변화는 일차적으로는 갯벌의 이동에 의한 해저 지형 및 퇴적상의 변화로 나타난다. 그러나 이와 같은 연안 갯벌 환경변화는 매우 느리며, 장기적이고 지속적으로 나타나므로 그 변화의 정도 및 피해영향의 심각성이 쉽게 인식되지 않는다. 방조제 축조 공사로 인해 발생될 수 있는 가장 중요한 갯벌 환경 변화로는 유속의 증감에 따른 갯벌의 운반 및 집적 변화를 예상할 수 있다. (중략)

  • PDF

Characterizing the Spatial-temporal Distribution of Soil Moisture for Sulmachun Watershed Through a Continuous Monitoring (설마천 유역의 토양수분 장기 모니터링을 통한 토양수분 시공간 변화양상의 특성화)

  • Lee, Ga Young;Kim, Ki Hoon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.209-214
    • /
    • 2004
  • Time Domain Reflectometry with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture in a mountainous hillslope. An intensive surveying was performed to build a refined digital elevation model and flow determination algorithms with inverse surveying have been applied to establish an efficient soil monitoring system. Steady state wetness index, quasi-dynamic wetness index and fully dynamic wetness index have been calculated. Continuous monitoring of soil moisture data were analyized with wetness indices. Limitations and hydrological interpretations of this approach have beer discussed.

  • PDF

Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River (유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향)

  • Ock, Gi-Young;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.445-454
    • /
    • 2012
  • The present study aims to investigate the long-term channel morphological changes derived from channelization, embankment and levee construction works in unregulated fluvial channel of the Jiseock River. Analyses of aerial photographs taken past (Year 1966) and recent (Year 2002) showed the temporally remarkable changes in channel planform such as channel shape, bar migration, vegetation encroachment in bar. During the period, the natural single threading changed into braided types together with decreasing sinuosity by 9.2%, increasing vegetation occupied bar ranged 97% of total bars area. Because such channel morphological changes are closely similar to those in dam downstream channels, we assume that both/either flow regime alteration and/or sediment transport discontinuity may be critical for the fixed channel and spread of vegetated bars even in unregulated river without dam reservoir upstream. We found more reduced frequency and magnitude of flooding water level comparing with past, but no significant alteration of inter annual water level variation. Bed material has been coarsened by 4~5 times and the riverbed has been degraded in overall channel but aggraded locally in conjunction reach of tributaries. The results indicates that reduced sediment dynamics in fluvial channel which derived by bed material coarsening, river bed degradation and unbalanced sediment transport capacity between tributary and mainstem can be a causal factor to trigger channel morphological changes even in unregulated rivers.

Applicability of Wind-Vegetation Model in Small Scale Sand Dunes (소규모 사구 지역 바람-식생모델 적용성 분석)

  • Choi, Seok Keun;Choi, Jae Wan;Park, Sang Wook;Jung, Sung Heuk;Lee, Soung Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.545-552
    • /
    • 2017
  • Aeolian dunes are typical sand dunes which are maintained and developed by interactions of earth surface, wind and vegetation. Developing a model which can predict the changing phenomena of these sand dunes is vital in enhancing the efficiency of understanding and management of terrains such as land degradation. In the existing models, however, there is lack of studies on the long - term behaviors of the sand dunes and application to actual topography. Therefore, this study applied the wind-vegetation model considering vegetation to the actual topography and analyzed the applicability of the wind-vegetation model by analyzing the long-term behaviors and comparing them with actual data. Through analysis, study found out that use of wind-vegetation model and data from unmanned aerial vehicle is effective in analyzing the changes of actual dune topography. Except for the boundary, the error of about 1m was generated compared with the change of the actual dune topography.

An Analysis of the Coastal Topography and Land Cover Changes in the Haeundae Beach (해운대 해수욕장의 해안지형 및 토지피복 변화 분석)

  • Yang, Ji-Yeon;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.101-115
    • /
    • 2006
  • As coastal erosion is increasing sharply because of sudden changes in the natural environment and increases in artificial development, the problem of coastal erosion become an important issue, socially and economically. To building the data which needed to grasp the situation and find a solution, we need the monitoring system for long-term. In this study, we analyzed the coastal topography and land cover changes in the Haeundae Beach during 60 years. The Haeundae Beach is the most famous beach in the country and coastal erosion are going on. First, we analyzed the change of coastal topography by calculated the coastline and area of the beach using aerial photos during 60 years. We extracted the coastline by digitized on aerial photo and corrected the height of tide level using sounding and GPS survey data. And we computed the area of beach and analyzed the change of area during 60 years. Second, we analyzed the change of land cover using landcover map. We made the detailed landcover map by on-screen digitizing and estimated the soil loss for the area nearby Haeundae Beach. As a result, we could see that the coastline get nearer to land and the area of beach has been reduced in general. We think that interception of sand supply by the development is the artificial cause of coastal erosion. The result of this study would be useful in long-term coastal monitoring and to analyze the cause of coastal environment change. We expect that the result is available on the coastal information system.

  • PDF

Diffusion equation model for geomorphic dating (지형연대 측정을 위한 디퓨젼 공식 모델)

  • Lee, Min Boo
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.4
    • /
    • pp.285-297
    • /
    • 1993
  • For the application of the diffusion equation, slope height and maximum slope angle are calculated from the plotted slope profile. Using denudation rate as a solution for the diffusion equation, an apparent age index can be calculated, which is the total amount of denudation through total time. Plots of slope angle versus slope height and apparent age index versus slope height are useful for determining relative or absolute ages and denudation rates. Mathematical simulation plots of slope angle versus slope height can generate equal denudation-rate lines for a given age. Mathematical simulations of slope angle versus age for a given slope height, for equal denudation-rate at a particular profile site, and for comparing to other sites having controlled ages.

  • PDF

Mapping Topography Change via Multi-Temporal Sentinel-1 Pixel-Frequency Approach on Incheon River Estuary Wetland, Gochang, Korea (다중시기 Sentinel-1 픽셀-빈도 기법을 통한 고창 인천강 하구 습지의 지형 변화 매핑)

  • Won-Kyung Baek;Moung-Jin Lee;Ha-Eun Yu;Jeong-Cheol Kim;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1747-1761
    • /
    • 2023
  • Wetlands, defined as lands periodically inundated or exposed during the year, are crucial for sustaining biodiversity and filtering environmental pollutants. The importance of mapping and monitoring their topographical changes is therefore paramount. This study focuses on the topographical variations at the Incheon River estuary wetland post-restoration, noting a lack of adequate prior measurements. Using a multi-temporal Sentinel-1 dataset from October 2014 to March 2023, we mapped long-term variations in water bodies and detected topographical change anomalies using a pixel-frequency approach. Our analysis, based on 196 Sentinel-1 acquisitions from an ascending orbit, revealed significant topography changes. Since 2020, employing the pixel-frequency technique, we observed area increases of +0.0195, 0.0016, 0.0075, and 0.0163 km2 in water level sections at depths of 2-3 m, 1-2 m, 0-1 m, and less than 0 m, respectively. These findings underscore the effectiveness of the wetland restoration efforts in the area.

Analysis of Quantitative Topographical Change in Eulsuk-Island Using Aerial Images (항공영상을 이용한 을숙도 지형의 정량적 변화 분석)

  • Lee, Jae-One;Song, Yu-Jin;Kim, Yong-Suk;Park, Hong-Joo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.527-534
    • /
    • 2011
  • This paper describes an analysis of topographical changes to the Eulsuk-Island at the Nakdong River Estuary using a long-term dataset of high resolution aerial images from 1983 to 2007. Ground control surveying was performed at some feature points using GPS(Global Positioning System) to accomplish AT(Aerial Triangulation) for past aerial images. Even if some still existing feature points appeared on old aerial images were used as GCPs(Ground Control Points) for past aerial images in AT, its accuracy reached at 1m level. Since then, a quantitative analysis of topographical changes was conducted on digital orthophotos produced by a series of aerial images taken by different years. The change volume of total area, construction, vegetation, buildings and roads could be extracted per each period in study area. The total area decreased from 1983 to 1992, but it has not almost changed since 1992. According to the continuous development, the area of vegetation has steadily decreased, while that of buildings and roads has generally increased. The result of this study can provide us with invaluable base data for further topographical change monitoring in Eulsuk-Island and Nakdong River estuary caused by continuous development in this area.

Geomorphological Properties and Changes on River-Mouth Bar at Song-cheon River (송천 하구 사주의 지형 특성과 변화 과정)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.693-706
    • /
    • 2011
  • The Geomorphological properties and ages of river-mouth bar at Song-cheon River in the East Coast of Korea, Yeongdeok-gun, Gyeongbuk Province are estimated, and the long-term and short-term changing processes and causes are analyzed. Sand grains of the bar near the coastline show the finer trends from south to north and these can be attributed to the northward movement of waves and long-shore currents. The absolute ages of bar and nearby coastal sand dune are less than approximately 100 years ago, indicating that the bar has experienced the active geomorphological changes. While the inlet located at south part of the bar between 1971 and 1995, the inlet has located at north or middle part since 1995. These may caused by the changes of movement directions of waves and long-shore currents due to the apparent northward movements of winds and currents. In short-term, the higher elevation, larger area, simpler landform relief and more variable location of inlet and morphology of bar can be observed between September and March due to the dominance of sedimentary processes by wave and wind processes.