The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.2
/
pp.204-208
/
2018
In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.
The object of this study is to develop an operating time prediction model for expressways using toll collection data. A Prediction model based on modular neural network model was developed and tested using real data. Two toll collection system(TCS) data set. Seoul-Suwon section for short range and Seoul-Daejeon section for long range, in Kyongbu expressway line were collected and analyzed. A time series analysis on TCS data indicated that operating times on both ranges are in reasonable prediction ranges. It was also found that prediction for the long section was more complex than that for the short section. However, a long term prediction for the short section turned out to be more difficult than that for the long section because of the higher sensitivity to initial condition. An application of the suggested model produced accurate prediction time. The features of suggested prediction model are in the requirement of minimum (3) input layers and in the ability of stable operating time prediction.
These studies are aimed at the analysis of systematic variation pattern of water resources in Korean river catchments and the development of their simulation models from the stochastic analysis of monthly and annual hydrologic data as main elements of water resources, i.e. rainfall and streamflow. In the analysis, monthly & annual rainfall records in Soul, Taegu, Pusan and Kwangju and streamflow records at the main gauging stations in Han, Nakdong and Geum river were used. Firstly, the systematic variation pattern of annual streamflow was found by the exponential function relationship between their standard deviations and mean values of log-annual runoff. Secondly, stochastic characteristics of annual rainfall & streamflow series were studied by the correlogram Monte Carlo method and a single season model of 1st-order Markov type were applied and compared in the simulation of annual hydrologic series. In the simulation, single season model of Markov type showed better results than LN-model and the simulated data were fit well with historical data. But it was noticed that LN-model gave quite better results in the simulation of annual rainfall. Thirdly, stochastic characteristics of monthly rainfall & streamflow series were also studied by the correlogram and spectrum analysis, and then the Model-C, which was developed and applied for the synthesis of monthly perennial streamflow by lst author and is a Markov type model with transformed skewed random number, was used in the simulation of monthly hydrologic series. In the simulation, it was proved that Model-C was fit well for extended area in Korea and also applicable for menthly rainfall as well as monthly streamflow.
This study aims at empirically verifying whether long memory properties exist in returns and volatility of the financial time series and then, empirically observing influential factors of long-memory properties. The presence of long memory properties in the financial time series is examined with the Hurst exponent. The Hurst exponent is measured by DFA(detrended fluctuation analysis). The empirical results are summarized as follows. First, the presence of significant long memory properties is not identified in return time series. But, in volatility time series, as the Hurst exponent has the high value on average, a strong presence of long memory properties is observed. Then, according to the results empirically confirming influential factors of long memory properties, as the Hurst exponent measured with volatility of residual returns filtered by GARCH(1, 1) model reflecting properties of volatility clustering has the level of $H{\approx}0.5$ on average, long memory properties presented in the data before filtering are no longer observed. That is, we positively find out that the observed long memory properties are considerably due to volatility clustering effect.
This study examined the dynamic relationship between urbanization and energy consumption in China. As an alternative to the conventional method of having the same integration of time series and large samples, ARDL method and Toda-Yamamoto causality analysis were applied. As a result, urbanization income, income, and energy consumption have a long-term stable equilibrium. Urbanization and income have a positive effect on energy consumption in the long run, but short-term changes of urbanization and income have no significant effect on energy consumption changes. The adjusted coefficient was -0.2395, which was statistically significant. In the causality test, income and energy consumption are useful to predict each other, but urbanization is exogenous because there are no causality with other variables. Since the process of urbanization in China has been proceeding slowly and deliberately by the government, it can be seen that the long-term effects of urbanization are clear and exogenous.
We consider bivariate long range dependent (LRD) time series forecasting using a deep learning method. A long short-term memory (LSTM) network well-suited to time series data is applied to forecast bivariate time series; in addition, we compare the forecasting performance with bivariate fractional autoregressive integrated moving average (FARIMA) models. Out-of-sample forecasting errors are compared with various performance measures for functional MRI (fMRI) data and daily realized volatility data. The results show a subtle difference in the predicted values of the FIVARMA model and VARFIMA model. LSTM is computationally demanding due to hyper-parameter selection, but is more stable and the forecasting performance is competitively good to that of parametric long range dependent time series models.
Increases in disasters and damage caused by the disasters in modern society, have a negative impact on local economy. In particular, a local economic downturn leads to a deterioration in quality of life of local residents and causes mental and material damage. Therefore, in order to achieve stable and sustainable local economic development, it is necessary to strengthen the resilience of the local economy. This study aims to estimate indicators of local economic resilience of Jindo County after the Sewol Ferry disaster, analyze a trend of the economic level after the disaster through time series data and suggest improvement plans of the local crisis management and restoration policy that considers future economic resilience. Results of this study showed that a decrease in the number of tourists and of workers in related industries hit tourism industry, causing a loss to the local economy and that an increase in a drinking rate of and stress awareness rate of local residents was a stress factor due to disaster impacts. These findings provides policy implications that it is necessary to make efforts for improving the depressed local image by utilizing local resources in the area, to build a sustainable long-term economic recovery policy and to provide psychological treatment and the relevant government and local government's support for relieving the stress of local residents due to the disaster impacts.
This study examines whether won/dollar futures have price discovery function and volatility spillover effect or not, using intraday won/dollar futures prices, volumes, and spot rates for the interval from March 2, 2005 through May 30, 2005. Futures prices and spot rates are non-stationary, but there is the cointegration relationship between two time series. Futures returns, spot returns, and volumes are stationary. Asymmetric effects on volatility in futures returns and spot returns does not exist. Analytical results of mean equations of the BGARCH-EC (bivariate GARCH-error correction) model show that the increase of futures returns raise spot returns after 5 minutes, which implies that futures returns lead spot returns and won/dollar futures have price discovery function. In addition, the long-run equilibrium relationship between the two returns could help forecast spot returns. Analytical results of variance equations indicate that short-run innovations in the futures market positively affect the conditional variances of spot returns, that is, there is the volatility spillover effect in the won/dollar futures market. A dummy variable of volumes does not have an effect on two returns but influences significantly on two conditional variances.
The purpose of this study was to determine the long term effect of a pleasantly designed interior on pro-saptial behavior. For pleasantly designed interior, the existing interior was remodeled through the change of finishing materials for major architectural elements such as wall, floor and ceiling, and changes of furniture and it's arrangement . Pro-spatial behavior was operationalized as seat arranging behavior and measured through the arranged condition and observable arranging behavior. Time-series design, one of quasi-experimental design was used. The data in this study were extracted from an existing field experimental research. Five hundred survey video tapes record during 2 years period were used. In conclusion, the pleasantly designed environment has a long term effect on the pro-spatial behavior change . While self-centered pro-spatial was improved continuously and even reinforced , altruistic pro-spatial behavior was improved but diminished as time passed. There were no differences in the effect between male and female children. The result of the research provide scientific background of an answer to why Interior Design.
Population aging has been one of the serious problems in Korea. Aging can affect social and economic features including energy consumption. This paper analyzed how population aging makes an effect on residential electricity demand. Yearly data from 1965 to 2010 were collected. The long and short-run demands for residential electricity were estimated with respect to Korean aging index. The results show that population aging reduces residential electricity demands in the short run significantly, but the effect decreases in the long run. However, population aging still negatively affects residential electricity consumption in long run. If population keep aging as Korean government expected, then the residential electricity demand per capita will grow less than 3%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.