• Title/Summary/Keyword: 장기 공용성

Search Result 77, Processing Time 0.02 seconds

A Study on Behavioral Characteristics of Asphalt Pavements using Wandering Measurement Devices (원더링 장비 적용을 통한 아스팔트 포장 거동 특성 연구)

  • Kim, Nakseok;Jeong, Jin-Hoon;Lee, Jae-Hoon;Park, Changwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.89-94
    • /
    • 2006
  • Premature failures in pavements are frequently reported due to rapid increasement in traffic volume, heavy vehicles, and high temperature in the summer. Based on this concept in mind, Korea Highway Corporation established the Test Road Operation Center to estimate the pavement performance. To evaluate the pavement performance effectively using the field data, wandering is an important topic in pavement analysis. In this study, portable wandering system was developed and analyzed to investigate the pavement responses due to the dynamic truck passes, and analyzed the wandering to dynamic load test. The test results revealed that the advantages of laser devices were noticeable compare to the other measuring ones. To understand the behavioral characteristics of pavements using the wandering measurement devices, dynamic truck tests were conducted in the field. Test results showed that the effects of wandering on asphalt pavement were significant. The data analysis using this wandering effect is considered as an important tool in performance analysis of asphalt concrete pavement.

Evaluating a Load Limit on Heavy Vehicles in Flexible Pavements (아스팔트 포장구조체에 대한 중차량 제한하중 평가)

  • Park, Seong-Wan;Hwang, Jung Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.53-60
    • /
    • 2010
  • The objective of this paper is to evaluate a performance-based load zoning procedure in flexible pavements. Long-term performance in flexible pavements will be evaluated using VESYS type rutting model and Miner s theory on fatigue cracking. Permanent deformation properties such as alpha and gnu, and fatigue cracking properties such as k1 and k2 in asphalt concrete were used respectively. The data from the literatures were also used in predicting performance in flexible pavements for evaluating load restrictions as well as parametric study. Finally, a performance-based load zoning procedure and a simple load limit procedure for load zoning were assessed.

Effects of Transverse Cracks on Stress Distributions of Continuously Reinforced Concrete Tracks Subjected to Train Loads (연속철근 콘크리트궤도의 횡균열이 열차 하중에 의한 응력 분포에 미치는 영향)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.355-364
    • /
    • 2014
  • The restrained volume changes of concrete due to variations of temperature and moisture produce transverse cracks in continuously reinforced concrete tracks (CRCTs). Such cracks are known to significantly affect the behaviors and long-term performance of CRCT. To investigate the effects of the transverse cracks on the behavior of CRCT and to develop more reasonable maintenance standards for cracks, in this study, the stress distribution of the track concrete layers (TCL) and the hydraulically stabilized base course (HSB) with transverse cracks were numerically predicted by a three dimensional finite element analysis when CRCT was subjected to train loads. The results indicate that the bending stresses of TCL and vertical stresses at the interfaces between TCL and HSB increased as the cracks were deepened. In addition, vertical stresses were locally concentrated near reinforcing steel in cracks in TCL when full-depth cracks developed, which may lead to punch-outs in CRCTs. Comparably, the effects of crack width and spacing were not as significant as crack depth. This study indicates that ensuring the long-term performance of CRCTs requires adequate maintenance not only for crack width and spacing but also for crack depth. Our results also show that locating HSB joints between sleepers is beneficial to the long-term performance of CRCTs.

Evaluation of Performance and Construction the New National Test Road Sites of Modified Asphalt (신설국도의 시험시공을 통한 표층용 개질 아스팔트 공용성 평가)

  • Cho, Gyu-Tae
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.43-49
    • /
    • 2002
  • Asphalt pavements have to perform under the conditions of heavily-loaded vehicles due to the industrialization and large temperature variance between the summer and the winter. Due to these factors, a characteristics change of early permanent deformation becomes a big issue, and to remedy this problem many research to use modified asphalt are being widely conducted. However, most of the modified asphalt is being paved after milling the surface course and applying tackcoating, and it is being used mostly for the repair and maintenance purpose rather than pavement of new national road. The purpose of this investigation is to obtain some fundamental data for the evaluation of the performance and long-term performance of the construction material mixtures by the laboratory test and field experiments. For the field experiment, 200m of two-lanes national road, that is being paved for the new national road under the direction of Pusan Regional Construction Management Office, was paved with SBS PMA and PSMA asphalt mixtures, which are an modified asphalt mixtures used for the surface course, on top of the base course paved with other modified asphalt mixtures. The remaining section of the new national road was paved with dense grade mixture. The laboratory tests assessed and analyzed the mixture characteristics by Marshall's stability test, strength tests and wheel-tracking test. On the basis of the evaluation result of the temperature control and roughness of the newly constructed road at the field experiment site, it is desired to evaluate and identify the most economic modified asphalt mixtures by long-term performance evaluation and LCC(Life Cycle Cost) analysis in order to apply the test result to the design of new road construction in the future.

  • PDF

A Study for Optimum Joint Spacing in Jointed Concrete Pavement (줄눈 콘크리트포장의 적정 줄눈간격에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.69-77
    • /
    • 2005
  • Joint spacing is a potent influence in increasing the long term performance of jointed concrete pavement slabs through the control of tensile stress, sealant failure and Load Transfer Efficiency (LTE). Internal Joint Spacing is an empirical and fixed method therefore this study will present the optimum joint spacing considerations depending on various climactic conditions. Calculating the optimum joint spacing eliminates random cracking due to the effect of the environmental loads such as the early behavior of drying shrinkage and heat hydration. Optimum joint spacing is calculated so as not to cause pavement distress by the deterioration of LTE by long term pavement movement. This study shows that the provisional joint spacing is 6-8m. Pavement Distress Prediction Models show that pavement distress has no effect on joint spacing of 8m.

  • PDF

Experimental study on usability of soil pavement using weathered granite soil and organic solidification agent (화강풍화토와 유기계 고화제를 이용한 흙포장의 사용성에 관한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Lee, Yong-Soo;Lee, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • The method to replace asphalt and cement is needed to reduce the carbon emission on road. Polymeric material which is light and easy to handle while having complex function with less carbon emission would be highly effective when it replaced soil pavement containing cement. This study is intended to identify the usability of soil pavement containing organic solidification agent only through the field test. Pavement on bike trail still satisfied required bearing capacity coefficient in 3 months. Pavement after passing 1.6 bil units of bike through pavement acceleration test that simulated a long-term serviceability during a short-time still remained unaffected, demonstrating a long-term serviceability of soil pavement.

Performance Estimation and Maintenance Method for Road Pavement Sections (국도 포장의 장기 공용성 추정 및 유지관리 방안)

  • Lee, Young-Uk;Do, Myung-Sik;Lee, Jong-Dal;Jang, Min-Keun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.125-129
    • /
    • 2007
  • In this paper, a PMS(Pavement Management System) application is presented to control the LCC(Life Cycle Cost) of road pavement. The aim of this paper is to provide the decision makers with the planning information regarding maintenance strategies for efficient road pavement management. The validity of PMS application presented in this paper is investigated through case studies for conducted for 22 national highway road sections in Korea.

  • PDF

Selection of Long-Term Pavement Performance Sections for Development of Distress Prediction Model in National Asphalt Pavement (국도 아스팔트 포장 파손예측모델 개발을 위한 장기 관측 구간 선정에 관한 연구)

  • Kwon, Soo-Ahn;Yoo, Pyeong-Joon;Kim, Ki-Hyun;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.123-134
    • /
    • 2002
  • Special pavement test sections were selected to develop a distress prediction model on asphalt pavement of National Highway. Experimental design was conducted for the selection of LTPP sections on in-service pavement(new and overlaid pavement) using several variables affecting pavement performance. Preliminary sections that satisfied the design template were chosen from the national highway database, and final selection was fixed through field inspection. The number of monitoring section is 95 including 47 overlaid pavement. A pavement distress data such as crack and rutting were collected for two years. An interim pavement performance analysis was peformed to show feasibility of performance monitoring program. Data related pavement such as traffic, weather, material characteristic and crack etc. should be collected for next project years and distress prediction model will be developed through the statistical analysis.

  • PDF

Steel Design of Continuously Reinforced Concrete Pavement based on the Width of Transverse Crack (횡방향 균열 폭에 기초한 연속철근 콘크리트포장의 철근설계)

  • Kim, Kyeong-Jin;Kim, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.106-114
    • /
    • 2009
  • The steel design based on the width of transverse crack which is the major factor to affect a long-term performance of continuously reinforced concrete pavement was developed. For this study, twenty-one cities of Texas were selected and the temperature data was collected at those locations during the past ten years. From the data, zero-stress temperatures were calculated by the PavePro program and the widths of transverse crack were analyzed by the CRCP program. The variables used to this numerical analysis were slab thickness, coefficient of thermal expansion of concrete, steel ratio, and design temperature. The total of 448 factorial runs were made and the regression analysis was performed using the results. Steel ratios from the regression equations were backcalculated and a steel design table was proposed.