• Title/Summary/Keyword: 장기구조성능

Search Result 223, Processing Time 0.024 seconds

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

최근 우리나라 조선산업의 모습과 장래 전망

  • 김영훈
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.64-67
    • /
    • 1995
  • 우리나라 조선산업이 21세기에 명실상부한 선진 조선국으로 발돋움하기 위해서는 단기적으로는 가격경쟁력의 강화가 요구되나 장기적으로는 기술자립화를 통해 과거 가격위주의 경쟁체제에서 기술위주의 경쟁체제로 전환함으로써 질적인 성장을 추구해야 할 것이다. 또한 우리나라의 조 선산업은 세계조선시장을 리드하는 선도국으로서 세계선박수급구조의 안정화에 노력하고 지구 해양환경보호를 위한 국제적인 프로그램에 적극 참여하는 한편, 후발조선국에 대한 기술협력, 기술지도 등 국제협력도 강화하여 명실상부한 선진조선국의 면모를 갖추어야 할 것이다. 이를 효과적으로 추진하기 위해서는 다음과 같은 과제를 해결해야 할 것이다. 첫째, 효율적 기술개발을 통한 건조기술의 재고가 그 무엇보다도 중요하다. 즉 단기적으로는 주요 대체수요 선박이면서 국내 주력건조선박인 탱커, 벌크케리어 등 재래단순형 선박에 대해 성에 너지화, 성인력화 및 표준선형화하고, 선박 생산공정의 개선, 생산성 향상을 통해 가격경쟁력을 지속적으로 확보해야할 것이다. 그러나 중장기적으로는 가스운반선,카페리선, 초고속선 등의 부가가치선박에 대한 건 조기술의 자립화로 이들 선종을 주력선종화하여 해외 수주 경쟁력을 재고시켜야 한다. 이와함께 심해탐사장비, 해양구조부유물 등의 해양개발장비의 개발로 사업영역을 확대해야할 것이다. 상 기의 각종 기술재발을 효율적으로 추진하기 위해서는 범국가적인 연구체제의 구성을 통한 산학연 공동연구형태로 추진하는 것이 바람직하다. 둘째, 핵심 조선기자재의 국산화와 품질 향상이 필 요하다. 향후 조선기자재의 국산화추진은 과거 개발 품목의 확대에서 벗어나 핵심적이고 부가 가치가 높은 품목 위주의 질적 국산화로 전환되어야 할 것이며, 이때 국산화이후 조선소의 적 극적인 구매가 전제되어야 할 것이다. 또한 기자재의 품질, 성능검사기능의 강화와 다수요 품목을 중심으로한 표준화, 규격화의 확대 추진으로 지속적인 품질향상과 원가절감을 도모해야한다. 특히 조선기자재업체의 영세상을 감안하여 조선소 인근지역에 단지화함으로써 생산설비의 현 대화, 자재의 공동구매, 물류비용의 절감 등을 기해 가격경쟁력을 강화해야 할 것이다. 또한 업계 공동의 해외판매망, A/S망의 직수출을 늘려야 할 것이다. 셋째, 국제협력 강화로 통상환경에 적극 대응해야 한다. 다자간조선협정 발효에 따른 제소 가능성에 대비하여 관민차원의 국제협 력을 강화하는 한편, 회계 기준의 통일, 제소사례의 연구 등을 업계 공동으로 추진하는 것이 바 람직하다. 또한 향후 2010년이후에 중국을 비롯한 후발조선국에 대해 조선협정에의 참여를 유도, 세계조선시장의 수급안정화에 노력해야할 것이다. 그외에 국제적으로 추진되는 지구그린화에 주도적 역할을 수행해야 할 것이다. 넷째, 선박금융제도의 개선과 신금융상품의 개발이 요구된다. 내수 수요인 계획조선의 지원조건을 개선하고 연불수출자금을 BBC자금으로 활용토록하여 국내 선주들의 신조를 유도해야 할 것이다. 그 외에 향후 금융개방화에 맞추어 해외자금을 활용한 리스금융, 상사금융 등의 민간신용제도를 더욱 활성화하고 선진국의 선박금융기법에 대한 연구 및 도입 등 선주들에게 다양한 선박건조자금을 제공하여 내수기반 확충에도 노력해야 할 것 이다.

  • PDF

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell (LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구)

  • Pyo, Seong-Soo;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

Evaluation of Hydration Heat Characteristics of Strontium Based Hydration Heat Reducer Addition on Concrete in Hot Weather Condition (서중환경에서 스트론튬계 수화열저감재를 사용한 콘크리트의 수화발열특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Kil, Bae-Su;Koyama, Tomoyuki;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.189-196
    • /
    • 2020
  • When concrete member become large like in high rise buildings, hydration heat makes temperature difference inside and outside and cause cracks. The method of using latent heat material as heat reducer could be more accessible, usable and efficient than other methods. Therefore, many studies using PCM as heat reducer are being conducted. Since heat reducer have different reacting temperature, they may be affected by environmental factors like ambient and concrete mixing temperature but studies issuing this are insignificant. Therefore, this paper attempt to evaluate the hydration heat characteristics and quality of concrete using strontium-based PCM under hot weather conditions. As a result, when the strontium-based hydration heat reducer was mixed 3wt.% and 5wt.% in hot weather condition, hydration heat speed and heating rate could be reduced by 8%, 21%, and 75, 85 minutes compared to OPC, respectively. This is considered to be the phase change reaction is relatively promoted when the temperature is high and cause improve performance than room condition result. Later, comparing the efficiency of other types of P.C.M in hot weather condition, and conduct detailed reviews on the strength development in long-term age.

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm (인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측)

  • Kwon, Seung-Jun;Yoon, Yong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure (콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안)

  • Park Chan-Gi;Won Jong-Pil;Kang Joo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.529-539
    • /
    • 2004
  • The corrosion of steel rebars has been the major cause of reinforced concrete deterioration. FRP(Fiber-reinforced polymer) rebar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP rebar is prone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Therefore, the USA, Japan, Canada, UK. etc are using environmental reduction factor. Although difference design guidelines were drawn in many, including USA, Japan, Canada, UK etc, recommendations and coefficients that could take into account the long-term behavior of FRP reinforcement were not well defined. This study focuses on recommendation of environmental reduction factor of FRP rebar. Environment reduction factor were decided using durability test result. FRP rebars were subjected to twelve type of exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. The water absorption behavior was observed by means of simple gravimetric measurements and durability properties were investigated by performing tensile, compressive and short beam tests. Based on the experimental result, environmental reduction factor of hybrid FRP rebar(A), and (C) and CFRP rebar was decided as 0.85. Also, hybrid FRP rebar(B) and GFRP rebar were decided as 0.7 for the environmental reduction factor

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.