• Title/Summary/Keyword: 잡음 대 신호비

Search Result 1,295, Processing Time 0.026 seconds

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

A Convergence Study on effectiveness of contrast agent reduction by normal saline solution dilution in the computed tomography of arteries of lower limb (하지동맥 전산화단층촬영 검사 시 생리식염수 희석을 통한 조영제 사용량 감소의 융복합 효용성 연구)

  • Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.431-437
    • /
    • 2015
  • This convergence study analyzed the effectiveness of contrast agent reduction by normal saline solution dilution in the computed tomography of arteries of lower limb. 48 patients of 125 cc contrast agent and 30 patients of the same amount divided at a ratio of 7:3 for the contrast agent and normal saline solution were studied. The average attenuation coefficient(HU) and signal to noise ratio(SNR) of abdominal aorta, femoral artery, popliteal artery and posterior tibial artery at each image were evaluated quantitatively and the four criteria in the five point scale was conducted qualitatively by two radiologists and four radiological technologists. In the quantitative evaluation, both HU and SNR had high average score before dilation but there were no statistical significance by independent t-test(p>0.05). In the qualitative evaluation, there were a little differences in the average scores between 4.86~4.77 of original contrast agent and 4.83~4.67 of dilated contrast agent but there were no statistical significance(p>0.05). In the computed tomography of arteries of lower limb, the dilated contrast agent doesn't influence image quality and reduces overall contrast agent and lowers iodine content per unit of molecular therefore will contribute to decrease side effect of contrast agent.

A Study on Bismuth tri-iodide for X-ray direct and digital imagers (직접방식 엑스선 검출기를 위한 $BiI_3$ 특성 연구)

  • Lee, S.H.;Kim, Y.S.;Kim, Y.B.;Jung, S.H.;Park, J.K.;Jung, W.B.;Jang, M.Y.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2009
  • Now a days, the Medical X-ray equipments has become digitalized from analog type such as film, cassette to CR, DR. And many scientists are still researching and developing the Medical X-ray equipment. In this study, we used the Bismuth tri-iodide to conversion material for digital X-ray equipments and we couldn't get the satisfying result than previous study, but it opened new possibility to cover the disadvantage of a-Se is high voltage aplly and difficultness of make. In this paper, we use $BiI_3$ powder(99.99%) as x-ray conversion material and make films that have thickness of 200um and the film size is $3cm{\times}3cm$. Also, we deposited an ITO(Indium Tin Oxide) electrode as top electrode and bottom electrode using a Magnetron Sputtering System. To evaluate a characteristics of the produced films, an electrical and structural properties are performed. Through a SEM analysis, we confirmed a surface and component part. And to analyze the electrical properties, darkcurrent, sensitivity and SNR(Signal to Noise Ratio) are measured. Darkcurrent is $1.6nA/cm^2$ and sensitivity is $0.629nC/cm^2$ and this study shows that the electrical properties of x-ray conversion material that made by screen printing method are similar to PVD method or better than that. This results suggest that $BiI_3$ is suitable for a replacement of a-Se because of the reduced manufacture processing and improved yield.

  • PDF

In Vivo and In Vitro Studies of the Steady State Free Precession-Diffusion-Weighted MR Imagings on Low b-value : Validation and Application to Bone Marrow Pathology

  • Byun, Woo-Mok
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Purpose : The purpose of this study was a phantom study to measure the diffusion properties of water molecules by steady-state free precession diffusion-weighted imaging (SSFP- DWI) with a low b-value and to determine if this sequence might be useful for application to the evaluation of bone marrow pathology. Materials and methods : 1. The phantom study: A phantom study using two diffusion weighted sequences for the evaluation of the diffusion coefficient was performed. Three water-containing cylinders at different temperatures were designed: phantom A was $3^{\circ}C$, B was $23^{\circ}C$ and C was $63^{\circ}C$. Both SSFP and echo planar imaging (EPI) sequences (b-value: $1000s/mm^2$) were performed for comparison of the diffusion properties. The Signal to noise ratios (SNR) and apparent diffusion coefficient (ADC) values of the three phantoms using each diffusion-weighted sequence were assessed. 2. The Clinical study: SSFP-DWI was performed in 28 patients [sacral insufficiency fractures (10), osteoporotic lumbar compression fractures (10), malignant compression fractures (8)]. To measure the ADC maps, a diffusion-weighted single shot stimulated echo-acquisition mode sequence ($650s/mm^2$) was obtained using the same 1.5-T MR imager Results : For the phantom study, the signal intensity on the SSFP as well as the classic EPI-based DWI was decreased as the temperature increased in phantom A to C. The ADC values of the phantoms on EPI-DWI were $0.13{\times}10^{-3}mm^2/s$ in phantom A, $0.22{\times}10^{-3}mm^2/s$ in B and $0.37{\times}10^{-3}mm^2/s$. in C. The SSFP can be regarded as a DWI sequence in view of the series of signal decreases. Conclusion : Bone marrow pathologies with different diffusion coefficients were evaluated by SSFP-DWI. All benign fractures were hypointense compared to the adjacent normal bone marrow where as the malignant fractures were hyperintense compared to the adjacent normal bone marrow.

  • PDF

Clinical Experience with 3.0 T MR for Cardiac Imaging in Patients: Comparison to 1.5 T using Individually Optimized Imaging Protocols (장비 별 최적화된 영상 프로토콜을 이용한 환자에서의 3.0T 심장 자기공명영상의 임상경험: 1.5 T 자기공명영상과의 비교)

  • Ko, Jeong Min;Jung, Jung Im;Lee, Bae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Purpose : To report our clinical experience with cardiac 3.0 T MRI in patients compared with 1.5 T using individually optimized imaging protocols. Materials and Methods: We retrospectively reviewed 30 consecutive patients and 20 consecutive patients who underwent 1.5 T and 3 T cardiac MRI within 10 months. A comparison study was performed by measuring the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the image quality (by grading each sequence on a 5-point scale, regarding the presence of artifacts). Results: In morphologic and viability studies, the use of 3.0 T provided increase of the baseline SNRs and CNRs, respectively (T1: SNR 29%, p < 0.001, CNR 37%, p < 0.001; T2-SPAIR: SNR 13%, p = 0.068, CNR 18%, p = 0.059; viability imaging: SNR 45%, p = 0.017, CNR 37%, p = 0.135) without significant impairment of the image quality (T1: $3.8{\pm}0.9$ vs. $3.9{\pm}0.7$, p = 0.438; T2-SPAIR: $3.8{\pm}0.9$ vs. $3.9{\pm}0.5$, p = 0.744; viability imaging: $4.5{\pm}0.8$ vs. $4.7{\pm}0.6$, p = 0.254). Although the image qualities of 3.0 T functional cine images were slightly lower than those of 1.5 T images ($3.6{\pm}0.7$ vs. $4.2{\pm}0.6$, p < 0.001), the mean SNR and CNR at 3.0 T were significantly improved (SNR 143% increase, CNR 108% increase, p < 0.001). With our imaging protocol for 3.0 T perfusion imaging, there was an insignificant decrease in the SNR (11% decrease, p = 0.172) and CNR (7% decrease, p = 0.638). However, the overall image quality was significantly improved ($4.6{\pm}0.5$ vs. $4.0{\pm}0.8$, p = 0.006). Conclusion: With our experience, 3.0 T MRI was shown to be feasible for the routine assessment of cardiac imaging.

Comparison of Exposure Dose by Using AEC Mode of Abdomen AP Study in Radiography (복부 전후 방향 검사의 자동노출제어 사용 시 선량 비교 연구)

  • Kim, Ki-Won;Kwon, Yong-Rak;Seo, Seong-Won;Kwon, Kyung-Tae;Oh, Joo-Young;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • We evaluated the effectiveness of TL (Time Limit) method by comparing with NTL (Non-time limit) method when it is used for examinations for abdomen Anterior Posterior (AP) in this paper. The evaluation was conducted based on the comparison of dose, and of signal to noise ratio (SNR) and contrast to ratio (CNR) on both methods. The experiments were conducted with XGEO GC 80 (Samsung, Korea), Unfors ThinX RAD (Unfors, Sweden) and Rando Phantom (Alderson research laboratories, USA) and shielding material with the size of $5.5{\times}9{\times}0.1cm^3$. It was set to activate only two upper ionization chambers in automatic exposure control(AEC) mode and the tube-voltage was set to 80kVp. When the exposure time was limited, it is limited to 51 msec. The images both by NTL AEC method and TL AEC method were acquired when with and without attachment of shielding material on the upper ionization chambers. The images were evaluated by SNR and CNR which are the image evaluation methods using 'Image J'. The NTL AEC method showed increases in dose as much as 130.7% at maximum and 80% at minimum than other methods. The TL AEC method showed decreases in mAs and exposure dose than the NTL AEC method as much as 43.8% and 44.4% respectively. There were no significant differences in SNR or CNR for the experiments (($p{\geq}0.05$). Therefore, it is suggested that the TLAEC mode is more effective when examining patients who have high BMI index or a patient with a metallic substance in the body after surgery.

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

Evaluation of Image Quality According to Presence or Absence of Upper limbs in Scan Field of View During CT Examinations (Including LUNG MAN) (CT 검사 시 스캔 범위 내 상지 유무에 따른 영상의 질 평가(LUNG MAN 포함))

  • Zhang, Yuying;Zheng, Haoyang;Jung, Kang-gyo;Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • The purpose of this study was to evaluate whether or not there was artifact when the upper limb could not be lifted to the top of the head during multi-detector computed tomography(MDCT) scans of the chest and abdomen. Contrast radiography of the human and chest phantom was performed with 128channal MDCT. Under the same conditions(120 kVp, 110 mAs, standard algorithm)both hands lifted up and put down each time in the human experiment. In the chest phantom experiment, the radiography was carried out when the upper limb phantom was adjusted at a certain distance(0, 3, 7 cm) from the chest phantom. Subsequently, the values of Noise, CT number, SNR, and CNR were measured in the field of concern. The noise value of fat, rib, and muscle increased when the arm was lifted in humans(0.79, 47.8, 27%). Furthermore, when the upper limb was lowered, the noise value of muscle and lung increased in the phantom(31.2, 9.4%). In addition, the noise value of the muscles and lung decreased by 5, 25.12% and 5.6, 15.35% as the upper limb moved about 0,3,7cm away from the chest. When the chest and abdominal radiography were performed, in the case of the presence of other parts outside the inspection area, the probability of artifact was minimal while the distance was more than 3cm away from the upper limb to the chest and abdomen.

Evaluation of Virtual Grid Software (VGS) Image Quality for Variation of kVp and mAs (관전압과 관전류량 변화에 대한 가상 그리드 소프트웨어(VGS) 화질평가)

  • Chang-gi Kong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2023
  • The purpose of this study is to evaluate the effectiveness of virtual grid software (VGS). The purpose of this study is to evaluate the changes in energy and object thickness by dividing the use of VGS into two cases (Without-VGS) without using a movable grid. We attempted to determine the effectiveness of VGS by acquiring images using a chest phantom and a thigh phantom and analyzing SNR and CNR. In the chest phantom and femoral phantom, the tube flow was fixed at 2.5 mAs, and the tube voltage was changed by 10 kVp from 60 to 100 kVp to measure SNR and CNR, and SNR was about 1.09 to 8.86% higher in the chest phantom than in Without-VGS, and CNR was 4.18 to 14.56% higher in the VGS than in Without-VGS. And in the femoral phantom, SNR was about 9.78 to 18.05% higher in VGS than in Without-VGS, and CNR was 21.07 to 44.44% higher in VGS than in Without-VGS. The tube voltage was fixed at 70 kVp in the chest phantom and the femoral phantom, and the amount of tube current was changed at 2.5 to 16 mAs, respectively, and after X-ray irradiation, SNR and CNR were measured in the chest phantom, which was about 1.49 to 11.11% higher in VGS than in Without-VGS, and CNR was 4.76 to 13.40% higher in VGS than in Without-VGS. And in the femoral phantom, SNR was about 2.22 to 17.38% higher in VGS than in Without-VGS, and CNR was 13.85 to 40.46% higher in VGS than in Without-VGS. Therefore, if an inspection is required with a mobile X-ray imaging device, it is believed that good image quality can be obtained by using VGS in an environment where it is difficult to use a mobile grid, and it is believed that the use of mobile X-ray devices can be increased.

Design and Performance Analysis of an Off-Axis Three-Mirror Telescope for Remote Sensing of Coastal Water (연안 원격탐사를 위한 비축 삼반사경 설계와 성능 분석)

  • Oh, Eunsong;Kang, Hyukmo;Hyun, Sangwon;Kim, Geon-Hee;Park, YoungJe;Choi, Jong-Kuk;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • We report the design and performance analysis of an off-axis three-mirror telescope as the fore optics for a new hyperspectral sensor aboard a small unmanned aerial vehicle (UAV), for low-altitude coastal remote sensing. The sensor needs to have at least 4 cm of spatial resolution at an operating altitude of 500 m, $4^{\circ}$ field of view (FOV), and a signal to noise ratio (SNR) of 100 at 660 nm. For these performance requirements, the sensor's optical design has an entrance pupil diameter of 70 mm and an F-ratio of 5.0. The fore optics is a three-mirror system, including aspheric primary and secondary mirrors. The optical performance is expected to reach $1/15{\lambda}$ in RMS wavefront error and 0.75 in MTF value at 660 nm. Considering the manufacturing and assembling phase, we determined the alignment compensation due to the tertiary mirror from the sensitivity, and derived the tilt-tolerance range to be 0.17 mrad. The off-axis three-mirror telescope, which has better performance than the fore optics of other hyperspectral sensors and is fitted for a small UAV, will contribute to ocean remote-sensing research.