• Title/Summary/Keyword: 잔차 패턴

Search Result 16, Processing Time 0.032 seconds

Dynamic graphic approach for regression diagnostics system (REDS) (동적그래픽스에 의한 회귀진단시스템(REDS)의 구현)

  • 유종영;안기수;허문열
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.241-251
    • /
    • 1997
  • Several studies have bee down on the work of dynamic graphical methods for regression diagnostics. The main propose of the methods were to investigate (1) the effects of change of data, or (2) the effects of change of regression coefficients on the regression models. But, by contrast, we can also investigate the effects of change of regression residuals on the regression model. This method can be used in fitting better a certain set of observations to a regression model than the other observations. Our research team approaches regression diagnostics by using dynamic graphics (REDS), and we introduce REDS in this thesis.

  • PDF

A Study on Spatial Downscaling of Satellite-based Soil Moisture Data (토양수분 위성자료의 공간상세화에 관한 연구)

  • Shin, Dae Yun;Lee, Yang Won;Park, Mun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.414-414
    • /
    • 2017
  • 토양수분은 지면환경에서 일어나는 수문 및 에너지 순환을 이해하는 데 있어 중요한 기상인자이다. 토양수분 현장관측은 땅속에 매설된 센서에 의해 상당히 정확하게 이루어지만, 관측점 수가 충분치 않아 공간적 연속성을 확보하지 못하는 어려움이 존재한다. 이에 광역적 및 연속적 관측이 가능한 마이크로파 위성센서가 토양수분 정보 획득을 위한 보조수단으로서 그 중요성이 부각되고 있다. 마이크로파 위성센서는 구름 등 기상조건의 제약을 받지 않으며, 1978년 이래 현재까지 여러 위성에 의해 25 km 및 10 km 해상도의 전지구 토양수분자료가 생산되어 왔다. 마이크로파 센서를 이용한 토양수분자료는 동일지점에 대하여 하루 2회 정도 산출되므로 적절한 시간분해능을 가지지만, 공간해상도가 최고 10 km로서 지역규모의 수문분석에 적용하기에는 충분치 않다. 이러한 토양수분자료의 공간해상도 문제 해결을 위하여 다양한 지면환경요소를 활용한 통계적 다운스케일링이 대안으로 제시되었다. 최근의 선행연구들은 대부분 방정식을 이용한 결합모형을 통해 통계적 다운스케일링을 수행하였는데, 회귀식과 같은 선형결합뿐 아니라 신경망이나 기계학습 등의 비선형결합에서도, 불가피하게 발생할 수밖에 없는 잔차(residual)로 인하여 다운스케일링 전후의 공간분포 패턴이 달라져버리는 문제를 안고 있었다. 회귀분석에 잔차의 공간내삽을 결합시킨 회귀크리깅(regression kriging)은 잔차보정을 통해 이러한 문제를 해결함으로써 다운스케일링 전후의 공간분포 일관성을 보장하는 기법이다. 이 연구에서는 회귀크리깅을 이용하여 일자별 AMSR2(Advanced Microwave Scanning Radiometer 2) 토양수분 자료를 10 km에서 1 km 해상도로 다운스케일링하고, 다운스케일링 전후의 자료패턴 일관성을 평가한다. 지면온도(LST), 지면온도상승률(RR), 식생온도건조지수(TVDI)는 일자별로 DB를 구축하였고, 식생지수(NDVI), 수분지수(NDWI), 지면알베도(SA)는 8일 간격으로 DB를 구축하였다. 이러한 8일 간격의 자료를 일자별로 변환하기 위하여 큐빅스플라인(cubic spline)을 이용하여 시계열내삽을 수행하였다. 또한 상이한 공간해상도의 자료는 최근린법을 이용하여 다운스케일링 목표해상도인 1 km에 맞도록 변환하였다. 우선 저해상도 스케일에서 추정치를 산출하기 위해서는 저해상도 픽셀별로 이에 해당하는 복수의 고해상도 픽셀을 평균화하여 대응시켜야 하며, 이를 통해 6개의 설명변수(LST, RR, TVDI, NDVI, NDWI, SA)와 AMSR2 토양수분을 반응변수로 하는 다중회귀식을 도출하였다. 이식을 고해상도 스케일의 설명변수들에 적용하면 고해상도 토양수분 추정치가 산출되는데, 이때 추정치와 원자료의 차이에 해당하는 잔차에 대한 보정이 필요하다. 저해상도 스케일로 존재하는 잔차를 크리깅 공간내삽을 통해 고해상도로 변환한 후 이를 고해상도 추정치에 부가해주는 방식으로 잔차보정이 이루어짐으로써, 다운스케일링 전후의 자료패턴 일관성이 유지되는(r>0.95) 공간상세화된 토양수분 자료를 생산할 수 있다.

  • PDF

Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM (LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단)

  • Baek Ji Hoon;Yoo Dong Yeon;Lee Jung Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.445-454
    • /
    • 2023
  • Recently, various fault diagnosis studies are being conducted utilizing data from collaborative robots. Existing studies performing fault diagnosis on collaborative robots use static data collected based on the assumed operation of predefined devices. Therefore, the fault diagnosis model has a limitation of increasing dependency on the learned data patterns. Additionally, there is a limitation in that a diagnosis reflecting the characteristics of collaborative robots operating with multiple joints could not be conducted due to experiments using a single motor. This paper proposes an LSTM diagnostic model that can overcome these two limitations. The proposed method selects representative normal patterns using the correlation analysis of vibration and current data in single-axis and multi-axis work environments, and generates residual patterns through differences from the normal representative patterns. An LSTM model that can perform gear wear diagnosis for each axis is created using the generated residual patterns as inputs. This fault diagnosis model can not only reduce the dependence on the model's learning data patterns through representative patterns for each operation, but also diagnose faults occurring during multi-axis operation. Finally, reflecting both internal and external data characteristics, the fault diagnosis performance was improved, showing a high diagnostic performance of 98.57%.

A CUSUM Chart for Detecting Mean Shifts of Oscillating Pattern (진동 패턴의 평균 변화 탐지를 위한 누적합 관리도)

  • Lee, Jae-June;Kim, Duk-Rae;Lee, Jong-Seon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1191-1201
    • /
    • 2009
  • The cumulative sum(CUSUM) control charts are typically used for detecting small level shifts in process control. To control an auto-correlated process, the model-based control methods can be employed, in which the residuals from fitting a time series model are applied to the CUSUM chart. However, the persistent level shifts in the original process may lead to varying mean shifts in residuals, which may deteriorate detection performance significantly. Therefore, in this paper, focussing on ARMA(1,1), we propose a new CUSUM type control method which can detect the dynamic mean shifts in residuals especially with oscillating pattern effectively and, through the simulation study, evaluate its performance by comparing with other various CUSUM type control methods introduced so far.

Rainfall Frequency Analysis Considering Change of Trend Slope in Observed Rainfall Intensity (관측강우강도의 경향성 기울기 변화를 고려한 강우빈도 해석)

  • Jang, Sun-Woo;Seo, Lynn;Choi, Min-Ha;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.26-30
    • /
    • 2011
  • 최근 기후변화에 따라 강우의 패턴이 변화하고 있다. 강우일수는 줄어드는 반면, 강우강도는 증가하여, 홍수로 인한 많은 피해에 직면하고 있다. 이러한 기상이변은 홍수방어시스템을 위한 수공구조물에도 많은 영향을 미친다. 수공구조물을 설계할 때, 일반적으로 강우 기록들의 통계적 특성이 정상성을 가진다고 가정한다. 하지만 최근의 강우 자료를 분석하면, 시간에 따라 평균, 분산, 왜곡도와 같은 기본 통계량이 변화하는 것을 알 수 있다. 따라서, 수공구조물의 설계를 위한 확률 강우량은 이러한 기후변화에 따른 자료의 특성을 반영할 필요가 있다. 본 연구의 목적은 강우 자료의 비정상성의 특성을 이용하여 확률강우량을 산정하는 것이다. 최근 비정상성 강우빈도해석에 대한 연구가 활발히 진행되고 있는데, 이들 연구는 대부분 목표연도까지 경향성의 기울기가 증가, 또는 일정하다고 가정한다. 하지만, 현재는 경향성이 있지만, 목표연도에는 경향성이 없을 경우도 있고, 또는 경향성이 있어도 그 기울기가 적어지는 경향을 보일 수도 있다. 본 연구에서는 현시점과 목표연도의 시점에 대한 경향성 기울기의 변화를 고려하여 비정상성 강우빈도해석을 수행하였다. 대상지점 선정은 통계적 경향성 검정, Mann-Kendall test를 이용하여 1994년(현재시점)에 경향성이 있다고 판단되는 관측지점을 대상지점으로 선정하였다. 분석 방법은 24시간 임계지속시간의 연최대강우자료를 구축하였다. 자료를 현시점까지 선형회귀식을 이용하여 잔차 계열을 산정하고, Gumbel 분포를 이용하여 확률 잔차를 산정하였다. 확률강우량을 추정하기 위해 추세요소를 산정하였다. 기울기의 증가 혹은 감소 경향을 회귀모형을 이용하여 추세요소를 산정하였고, 잔차의 확률빈도와 추세요소의 합으로 비정상상 확률강우량을 산정하였다.

  • PDF

How the Pattern Recognition Ability of Deep Learning Enhances Housing Price Estimation (딥러닝의 패턴 인식능력을 활용한 주택가격 추정)

  • Kim, Jinseok;Kim, Kyung-Min
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.183-201
    • /
    • 2022
  • Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimation capabilities of the Artificial Neural Network(ANN) and its 'Deep Learning' faculty. To make use of the strength of the neural network model, which allows the recognition of patterns in data by modeling non-linear and complex relationships between variables, this study utilizes geographic coordinates (i.e. longitudinal/latitudinal points) as the locational factor of housing prices. Specifically, we built a dataset including structural and spatiotemporal factors based on the hedonic price model and compared the estimation performance of the models with and without geographic coordinate variables. The results show that high estimation performance can be achieved in ANN by explaining the spatial effect on housing prices through the geographic location.

An Analysis of Urban Residential Crimes using Eigenvector Spatial Filtering (아이겐벡터 공간필터링을 이용한 도시주거범죄의 분석)

  • Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.179-194
    • /
    • 2009
  • The spatial distribution of crime incidences in urban neighborhoods is a reflection of their socio-economic environment and spatial inter-relations. Spatial interactions between offenders and victims lead to spatial autocorrelation of the crime incidences. The spatial autocorrelation among the incidences biases the interpretation of the ecological model in OLS framework. This research investigates residential crimes using residential burglaries and robberies occurred in the city of Columbus, Ohio, for 2000. In particular, the spatial distribution of incidence rates of residential crimes are accounted in OLS framework using eigenvectors, which reflect spatial dependence in crime patterns. Result presents that handling spatial autocorrelation enhanced model estimation, and both economic deprivation and crime opportunity are turned out significant in estimating residential crime rates.

  • PDF

Derivation of Basal Area Projection Function for Forest Plantation Using Medium (3-5years) Measurement Cycles (중간(中間) 측정(測定) 주기(週期) (3-5년)를 이용(利用)한 인공림(人工林)의 흉고단면적(胸高斷面績) 추정(推定) 함수(函數)의 유도(誘導))

  • Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.463-469
    • /
    • 2000
  • Douglas-fir (Pseudotsuga menziesd Mirb. Franco) is highly regarded as a commercial timber species throughout the world in part due to its fast growth relative to many other species. In this study, basal area per hectare equation for Douglas-fir plantations in Southland of New Zealand has been developed based on medium measurement cycles of permanent sample plots data set. The function was developed using the algebraic difference equation method, and various sigmoid-shaped projection equations were used. Parameter estimation was obtained by non-linear routine of the SAS. As a result, of the functions tested a variant of the Schumacher polymorphic function including site index and thinning term as predictor variables showed the higher precision of the fitting. The results indicate that site index is positively correlated with basal area growth. And the thinning term was found to be useful to increase precision of the model.

  • PDF

Application Analysis of Digital Photogrammetry and Optical Scanning Technique for Cultural Heritages Restoration (문화재 원형복원을 위한 수치사진측량과 광학스캐닝기법의 응용분석)

  • Han, Seung Hee;Bae, Yeon Soung;Bae, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.869-876
    • /
    • 2006
  • In the case of earthenware cultural heritages that are found in the form of fragments, the major task is quick and precise restoration. The existing method, which follows the rule of trial and error, is not only greatly time consuming but also lacked precision. If this job could be done by three dimensional scanning, matching up pieces could be done with remarkable efficiency. In this study, the original earthenware was modeled through three-dimensional pattern scanning and photogrammetry, and each of the fragments were scanned and modeled. In order to obtain images from the photogrammetry, we calibrated and used a Canon EOS 1DS real size camera. We analyzed the relationship among the sections of the formed model, efficiently compounded them, and analyzed the errors through residual and color error map. Also, we built a web-based three-dimensional simulation environment centering around the users, for the virtual museum.

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.