본 연구에서는 조건부 핵밀도함수와 CAFPE(Corrected Asymptotic Final Prediction Error) 차수결정 방법에 근거한 비매개변수적 비선형 자기회귀 (Nonlinear AutoRegressive, NAR) 모형을 소개하고 이를 SOI(Southern Oscillation Index)에 적용하였다. SOI 자료에 대해서 선형 AR 모형을 적용하였으나 잔차에 대한 검정결과 이분산성(heteroscedasticity)을 나타내었다. 또한 BDS(Brock-Dechert-Sheinkman) 검정에서 비선형성이 존재함을 확인하였다. 따라서 NAR 모형에 SOI 자료를 적용시켰다. CAFPE를 이용하여 가장 적합한 모형으로 지체 1, 2와 4가 선택되었으며 조건부 평균함수를 추정하여 SOI 자료를 모의한 결과 잔차에 대해서 정규성과 이분산성 가정이 Jarque-Bera 검정과 ARCH-LM 검정에서 각각 기각되었으며 또한 조건부 표준편차함수의 최적 차수로 3, 8과 9가 CAPFE를 통해 선택되었다. 조건부 평균함수와 표준편차함수를 모두 고려한 모형에 대한 잔차 검정 결과 잔차의 I.I.D 가정을 만족하였으며 특히, BDS 검정에서 신뢰구간 95%와 99%에서 모두 만족한 결과를 나타내었다. 마지막으로 전체의 15%에 해당하는 SOI 자료에 대해서 One-Step 예측을 수행하였으며 선형 모형에 비해 평균제곱예측오차가 7% 적게 나타났다. 따라서, NAR 모형은 여타의 매개변수적 방법과 달리 모형 선택에 있어 자유로우며 비선형성을 고려할 수 있는 모형으로서 SOI 자료와 같은 비선형 자료를 위한 모의방법으로 선형 모형에 비해 많은 장점을 가지고 있다.
Communications for Statistical Applications and Methods
/
제1권1호
/
pp.131-140
/
1994
Box-Jenkins 시계열 분석에서 모형검진을 위한 통계량으로 잔차의 자기상관함수를 이용한 Box와 Pierce(1970)의 포트맨토우 검정과 Ljung과 Box(1978)의 변형된 포트맨토우 검정을 Basawa(1987)가 제안한 예측오차를 이용한 모형 검진 방법과 비교, 분석하였다. 시뮬레이션 연구를 수행하여 경험적 평균, 분산 및 유의 수준을 비교하여 과대적합의 방법을 이용하여 검정력을 비교하였다.
Communications for Statistical Applications and Methods
/
제16권4호
/
pp.587-594
/
2009
이 논문에서는 선형회귀모형의 오차항에 대한 변화점 검정 문제를 다룬다. 고정 혹은 변동 모형의 독립 변수와 약한 종속성을 가지는 오차항을 가정하는 관계로 통상적인 중회귀모형뿐만 아니라 ARMA 등의 시계열 모형까지 본 논문에서 포괄한다고 하겠다. 오차항의 분포 변화를 검정하기 위하여 회귀모형의 잔차에 기초한 확률밀도함수 추정값을 이용한다. 적절한 가정하에서 잔차를 이용한 검정이 실제 오차를 이용한 경우와 동일한 극한 분포를 가짐을 보였다.
Journal of the Korean Data and Information Science Society
/
제12권1호
/
pp.27-40
/
2001
본 연구는 시간의 변화에 따라 여러 개의 전환점이 발생하여 선형회귀모형들이 여러번 변화할 때의 변환시점을 Gasser, Stroke와 Jennen-Steinmez의 잔차분산 추정량을 이용하여 검정하고 실제의 몇 가지 모형을 제시하여 Graphic을 통하여 조사한 결과 여기서 제시한 방법이 더 효과적으로 자중전환점을 찾을 수 있었다.
공변량(covariate)이 존재하는 경우, 각 처리군 간 효과의 차이를 검정하기 위한 대표적인 비모수적 방법에는 Quade (1967)가 제안한 검정법이 있다. 또한 반응변수에 대해 공변량으로 단순선형회귀분석을 실시하여 얻은 잔차에 대해 일원배치분산분석과 Kruskal Wallis가 제안한 방법을 적용하는 방법, 그리고 Hwang과 Kim (2012)이 제안한 비모수적 도구인 위치(placement)를 이용한 방법이 있다. 본 논문에서는 공분산분석 모형에서 Hwang과 Kim (2012)이 제안한 방법을 확장하여 공분산분석에서의 새로운 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation study)을 통하여 기존의 검정법들과 제안한 방법의 검정력을 비교하였다.
본 논문은 시계열에 내재된 설${\cdot}$추석 등 음력 명절효과의 존재를 검정하기 위해 RegARIMA 모형의 잔차에 대한 t-검정 통계량을 제시하였으며 Box-plot에 의한 그래프적 진단을 시도하였다. 제시된 t-검정 결과를 X-12-ARIMA의 AICC-사전검정 및 RegARIMA 모형에 의해 추정된 명절효과 회귀계수의 t-값과 비교하였다. 사용된 명절효과 변수는 Bell과 Hillmer(1983)의 명절효과 변수이다.
Carroll과 Ruppert(1988)는 준가능도(quasi-likelihood)를 이용하여 에스트라제 측정자료를 회귀분석하였다. Jung과 Lee(1997)는 준가능도을 이용한 회귀분석모형의 적합도정통계량을 제안하였으며 검정 별과 기각되지 않아 본 분석모형이 타당하다고 주장하였다. 그러나 Lee와 Nelder(1998)의 잔차그림을 검토한 결과, 상기 모형으로는 평균증가에 따른 분산증가를 충분히 반영할 수 없었다. 본 논문에서는 Lee와 Nelder(1998)의 평균과 분산의 동시모형으로 에스트라제 자료를 재분석하고 잔차그림을 이용하여 모형의 타당성을 재평가하였다. 또한 분산에서 산포모형에 대한 적합도검정에는 Lee와 Nelder(1998)의 제한가능도(restricted likelihood)에 근거한 검정법이 보다 적절함을 제시하였다.
Journal of the Korean Data and Information Science Society
/
제22권4호
/
pp.701-715
/
2011
초고속 무선인터넷은 무선 인터넷의 전송속도가 약 1Mbps이상을 말하며, HSDPA, WiBro 등으로 이러한 서비스를 제공하고 있다. 본 논문은 초고속 무선인터넷 서비스의 단말기를 폰형과 모뎀형으로 정의하고, 단말기 형태와 이용하는 장소에 따라 어떤 콘텐츠들을 선호하는 지를 분석하는 연구이다. 이를 위해 범주형 자료분석에서 사용하는 수정된 잔차모형과 대응분석, 중대응분석을 이용하였다. 세 가지 모형에 의한 결과가 모두 달랐으며 대응분석과 중대응분석의 일치도는 50%, 수정된 잔차와 대응분석의 일치도는 26.3%, 수정된 잔차와 중대응분석의 일치도는 21.1%를 보였다. 이러한 차이는 수리적 모형의 차이에서 기인하고 있으며, 본 주제에서 추천하는 방법은 수정된 잔차모형이다. 수정된 잔차모형은 선호하는 콘텐츠 뿐 만 아니라 비선호하는 콘텐츠도 알 수 있으며 검정도 가능하다. 분석 대상 10개의 콘텐츠 중 세 방법에 의해 선택되지 않는 콘텐츠는 업무였으며, 나머지 콘텐츠는 적어도 한번은 선택되었다.
본 연구는 항공 LiDAR DEM을 생산하는 FUSION 소프트웨어의 GroundFilter 모듈의 필터링 알고리즘(FA)과 GridSurfaceCreate 모듈의 보간 알고리즘(IA) 패러미터 수준 변화의 DEM 정확도에 대한 영향여부를 평가하고, 가장 정확한 해발고도 정보를 제공하는 LiDAR DEM을 생산하기 위한 패러미터 수준을 제시하고자 하였다. FA의 median 패러미터($F_{md}$), mean 패러미터($F_{mn}$) 및 IA의 median 패러미터($I_{md}$), mean 패러미터($I_{mn}$)에 대해 5개 수준(1, 3, 5, 7 및 9)을 적용한 조합의 변화에 따라 DEM의 정확도에 대한 영향 여부를 평가하기 위해 DEM 결과물의 해발고도와 실측한 현장 해발고도 간의 잔차를 종속변수로 선정하였다. 이후 패러미터의 수준 변화가 잔차 변화에 대한 영향 여부를 검정하는 다원분산분석을 실시하고, 다원분산분석 결과에서 유의미한 영향이 있는 변수의 패러미터 수준들을 잔차에 대한 영향이 차이가 나는 집단으로 그룹화하기 위해 사후검정인 Tukey HSD를 수행하였다. 다원분산분석 결과, 개별 $F_{md}$, $F_{mn}$, $I_{mn}$에서의 수준 변화와 잔차 변화 사이에 유의미한 관계가 있었으며, $I_{mn}$은 유의미한 영향이 없었다. 아울러 $F_{md}$와 $F_{mn}$의 패러미터 조합의 상호작용효과가 잔차 변화에 유의미한 영향을 미치는 것으로 나타났다. 이에 따라 $F_{md}$와 $F_{mn}$의 수준 및 $F_{md}{\ast}F_{mn}$ 상호작용 수준 그리고 $I_{mn}$의 수준이 DEM 정확도에 영향을 주는 요인으로 판단된다. $F_{md}{\ast}F_{mn}$의 조합에 대한 사후검정 결과, 잔차들의 평균 차이에 따라 네 개의 집단으로 나뉘었으며, 그중 '$9{\ast}3$' 조합이 가장 정확도가 높았으며, '$1{\ast}1$' 조합이 가장 낮은 정확도를 나타내었다. $I_{mn}$의 사후검정 결과, 세 개의 집단으로 나뉘었으며, 그중 수준 '3'과 '1'이 가장 낮은 잔차 평균값을 나타내었다. 따라서 가장 정확한 해발고도 정보를 제공하는 항공 LiDAR DEM의 생성을 위하여 $F_{md}{\ast}F_{mn}$의 조합이 수준 '$9{\ast}3$', $I_{mn}$은 수준 '3' 혹은 '1'인 조건을 우선적으로 고려해야할 것으로 판단된다. 본 연구는 LiDAR 자료 기반의 산림속성정보를 추출하는 연구들의 정확도 향상에 기여할 수 있을 것으로 사료된다.
본 논문에서는 회귀모형에서의 오차항이 비선형시계열(nonlinear time series)을 따르는 경우에 오차항이 선형인지를 검정하는 방법에 대해서 연구하고 있다. 이를 위해서 회귀계수의 대표본 성질을 규명하고 잔차를 이용한 오차항의 선형성 검정통계량을 유도하고 그 성질을 연구해 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.