• Title/Summary/Keyword: 잔존긴장력

Search Result 11, Processing Time 0.029 seconds

Stability Evaluation of Anchors Using Lift-off Field Test (리프트오프 현장시험을 이용한 앵커의 안정성 평가)

  • Choi, Tae Sic;Yun, Jung Mann;Kim, Yong Seong;You, Seung Kyong;Lee, Kang Il
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.128-142
    • /
    • 2021
  • Purpose: This study examines the safety management of anchors that have already been constructed and evaluates the results of lift-off tests conducted at the site. The purpose of the project is to study countermeasures if necessary. Method: Compare the residual load gained after the lift-off test at 36 points behind the site with the preemptive load, allowable load, and design load. We also analyze stability through this and evaluate the stability of anchors. Results and Conclusion: The residual tension at 26 points remained stable. However, the residual load at 10 points was analyzed to be greater than the designed load and less than the allowable load, and it was evaluated as an instability that could cause fracture problems. Therefore, anchors with unstable conditions at 10 points should be monitored and monitored through periodic measurements and quality tests, and the anchor should be observed at the surrounding points as well as the relevant points to maintain stability.

Evaluation of Residual Tensile Load of Field Ground Anchors Based on Long-Term Measurement (현장 그라운드 앵커 장기거동 분석을 통한 잔존긴장력 평가)

  • Park, Seong-yeol;Lee, Sangrae;Jung, Jonghong;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.35-47
    • /
    • 2020
  • For permanent anchors used for slope reinforcement, bearing capacity and durability should be secured during the period of use. However, according to recent domestic and foreign studies, phenomena such as tension fractures, damage to anchorages, deformation and damage to slope and reduction of residual load over time have been reported along the long-term behavior of the anchors. These problems are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs and relevant facility collapse. It is necessary to improve maintenance procedures and methods of ground anchors more practically. In this study, the problems and limitations of domestic maintenance methods were analyzed by conducting a literature study, and the measurement data of load cells installed on the install ground anchors were analyzed to determine the change in the residual load with regard to the elapsed date of the anchors. Based on the results, the effect of the construction conditions of anchors and the soil compositions on the increase and decrease of load were identified.

Improvement of Lift-off Tests via Field Evaluation of Residual Load in Ground Anchor (현장 잔존긴장력 평가를 통한 리프트오프 시험 방법 개선)

  • Song, minkwon;Park, Seong-yeol;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.43-51
    • /
    • 2019
  • At present, the ground anchor method is commonly applied to securing the slope stability in Korea. The ground anchor is reported to decrease in tensile load due to aging and environmental influences with time such as corrosion, relaxation, creep and so on. In Korea, the lift-off test is performed for the periodic inspection or cases when the symptoms of deterioration on anchors and the residual tensile load of the anchors is checked. However, the current lift-off test standard (MOLIT, 2010) is not fully specified in details. In this study, the factors affecting the lift-off test were investigated based on the previous research and foreign standards and lift-off tests were performed with consideration for the loading and unloading cycle, load increment method, and tensioning tendon method. Based on the results, this paper proposes improved testing and evaluation procedures of the lift-off test considering the workability and time limits in the field.

Development of Visual Confirmation Device for Anchor Tensile Force (앵커 긴장력 상시확인을 위한 육안확인장치 개발)

  • Yoon, Hwan Hee;Lee, Yong Joo;Oh, Dong Wook;Kim, Dong Hyun;Jung, Hyuk Sang
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.493-511
    • /
    • 2018
  • This paper deals with visual confirmation device for tensile force verification in order to cope with tensile force loss of ground anchor. Ground anchors are constructed to ensure the stability of social infrastructure facilities, but continuous loss of tensile force is seriously concerned about safety of the facilities. This requires the maintenance of the anchors, but the current measuring of residual tensile force is done by sampling, taking into account economic aspects, which limits precision. In this paper, conducted a conceptual design, tensile experiment, and field test for the purpose of developing an anchor tensile force visual device to check the tensile force of the anchors.

A Study on the Correlation between the Prestress Force and the Effective Rigidity of the Bonded Tendon (부착식 텐던의 긴장력과 유효 강성의 상관성 연구)

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.641-644
    • /
    • 2010
  • 프리스트레싱 시스템이 도입된 구조물의 사용수명이 오래됨에 따라, 이들 구조물의 잔존수명 평가와 보수 및 보강 등의 유지관리 차원에서 프리스트레싱 시스템의 현재 긴장력에 대한 평가는 매우 중요한 현안이 되어왔다. 따라서, 본 논문에서는 프리스트레싱 시스템의 현재 긴장력을 평가하기 위한 첫 단계로서 프리스트레싱 시스템의 긴장력이 구조계의 강성에 미치는 영향을 평가하였다. 이를 위하여 부착식 텐던 형식의 프리스트레싱 시스템이 도입된 시험체를 대상으로 SIMO sine sweep test를 수행하고 긴장력과 시험체의 유효 강성에 대한 상관성을 규명하였다. 그 결과, 프리스트레싱 시스템의 긴장력은 시험체의 유효강성을 증가시키며, 저차 고유진동수가 긴장력과 높은 상관성을 지니는 것으로 나타났다.

  • PDF

Prediction of Long-term Behavior of Ground Anchor Based on the Field Monitoring Load Data Analysis (현장 하중계 계측자료 분석을 통한 그라운드 앵커의 장기거동 예측)

  • Park, Seong-yeol;Hwang, Bumsik;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.25-35
    • /
    • 2021
  • Recently, the ground anchor method is commonly applied with nail and rock bolt to secure the stability of slopes and structures in Korea. Among them, permanent anchor which is used for long-term stability should secure bearing capacity and durability during the period of use. However, according to recent studies, phenomenon such as deformation to slope and the reduction of residual tensile load over time have been reported along the long-term behavior of the anchors. These problems of reducing residual tensile load are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs. In this study, we identified the factors that affect the tensile load of permanent anchor from a literature study on the domestic and foreign, and investigated the prior studies that analyzed previously conducted load cell monitoring data. Afterwards, using this as basic data, the load cell measurement data collected at the actual site were analyzed to identify the tensile load reduction status of anchors, and the long-term load reduction characteristics were analyzed. Finally, by aggregating the preceding results, proposed a technique to predict the long-term load reduction characteristics of permanent anchors through short-term data to around 100 days after installation.

A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature (고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구)

  • Choi, Kwang-Ho;Lee, Joong-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • This research was planned to evaluate the structural performance of post tensioned(PT) concrete member subjected to fire. Prime objective was to suggest some techniques to evaluate the performance of post tensioned concrete beam and slab exposed to high temperature through experiment. To accomplish this objective, the following two scopes have been proceeded to verify the strength reducing ratio of strands and find out the difference of resisting force at the PT concrete members exposed to high temperature through the fire test. The properties of prestressing steel(tendon) in PT concrete beam and slab under variable temperatures were reviewed. The test of this study was shown that stress relaxation occurred at high temperature, and some restoration of tensional force appeared as it got cooling down. The residual tension of the post tensioned beams at 4 hours after reaching the target temperature were 70% at $400^{\circ}C$, 10% at $600^{\circ}C$ and 2% at $800^{\circ}C$. The post tensioned slabs were 94% at $400^{\circ}C$, 84.5% at $600^{\circ}C$ and 62% at $800^{\circ}C$. The reason why the residual tension loss of the post tensioned slab was relatively small was considered to be that the slab was exposed just one side to high temperature and the strength of the strand was restored larger than that of beam. Also, it was confirmed that the post tensioned member inevitably experienced the loss of strength by fire damage, and restoration design of the member should be required to compensate for the value as much as lost strength.

A Study on the Calculation of Load Resistance Factor of over Tension Anchors by Optimization Design (최적화 설계를 통한 과긴장 앵커의 하중-저항계수 산정 연구)

  • Soung-Kyu Lee;Yeong-Jin Lee;Yong-Jae Song;Tae-Jun Cho;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2023
  • To consider the risk of damage and fracture of P.C strands, the existing post-maintenance system alone has the limitations, hence it is necessary to quantitatively evaluate and predict the deterioration, durability and safety of facilities and establish a reasonable maintenance system considering the asset value of facilities. Therefore, it is worth considering a preventive maintenance plan that allows proactive measures to be taken before a major defect occurs in the temporary anchor. This study devised a preventive over tension method, reviewed its effectiveness through design and field tests, by calculating the resistance factors by performing a reliability-based optimization design. At this time, the over tension anchor method was evaluated using the ratio of the residual tension force after the fracture of P.C strands to the effective tension force before the fracture of P.C strand, followed by the resistance factor calculated by the optimal solution for each random variables using Excel solver and applying it to the limit state equations. As a result of the study, if the over tension ratio is 125% to 130%, the remaining strands showed a high resistance effect even after the fracture of P.C strand. As a result of the optimization design, it was found that it is appropriate to apply the load factor (γ) of 1.25, and the resistance factors of Φ1, Φ2, Φ3 as 0.7, 0.5, 0.6.

The Inclination Characteristics of PSC BOX in FCM Bridge Construction Method (FCM 교량 가설 공법에서 주두부의 기울음 특성)

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • This study presents basic data on how to secure stability by analyzing the change in tensile force of steel rod and the inclination characteristics of PSC BOX in the "Temporary fixation system using internal prestressing tendon", which is mainly applied to construction of superstructures by FCM. To date, it has been difficult to confirm the changes in tension force of the steel rod and the inclination of the PSC BOX because the steel rod was installed vertically inside the pier and the PSC BOX. Therefore, measurement of the change in length of the steel rod and the displacement of PSC BOX were performed using a micro-measured FBG sensor. Comparisons of the calculated tensile force and the residual tensile force of the steel rod revealed that the safety factor decreased in all bridges. The cause was mainly identified to be the loss of tensile force in fixation~1segment, and countermeasures are suggested. The analysis of the inclination characteristics showed that the inclination increased with the segment progresses even in bridges with sufficient safety factor, and the difference before and after the segment was confirmed. In addition, the increase in inclination was related to the loss of tension force in the steel rod, and the stress on the opposite sides of the inclination was further reduced. It is believed that upward tensile force is generated in the steel rod on the opposite side of the inclined side due to the unbalanced moment, causing the difference in stress of the steel rod between the two sides.

Experimental Study on Fire-Resistant Characteristics of Bi-Directionally Prestressed Concrete Panel under RABT Fire Scenario (RABT 화재시나리오를 적용한 이방향 프리스트레스트 콘크리트 패널부재의 내화특성에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.695-703
    • /
    • 2012
  • Recently, major infrastructure such as bridges, tunnels, PCCVs (Prestressed Concrete Containment Vessel), and gas tanks are Prestressed Concrete (PSC) structure types, which improve their safety by using confining effect from prestressing. Generally, concrete is known to be an outstanding fire resistant construction material. Because of this reason, researches related to extreme fire loaded PSC member behaviors are not often conducted even though PSC behavior under extreme fire loading is significantly different than that of ordinary reinforced concrete (RC) behavior. Therefore, in this study, RABT fire loading tests were performed on bi-directionally prestressed concrete panels with $1000{\times}1400{\times}300mm$ dimensions. The prestressed specimens were applied with 430 kN prestressing (PS) force using unbonded PS thread bars. Also, residual strength structural tests of fire tested PSC and ordinary RC structures were performed for comparison. The study results showed that PSC behavior under fire loading is significantly different than that of RC behavior.